Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications

Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2

Abstract

Injured skeletal muscles which lose more than 20% of their volume, known as volumetric muscle loss, can no longer regenerate cells through self-healing. The traditional solution for recovery is through regenerative therapy. As the technology of three-dimensional (3D) bioprinting continues to advance, a new approach for tissue transplantation is using biocompatible materials arranged in 3D scaffolds for muscle repair. Ultrashort self-assembling peptide hydrogels compete as a potential biomaterial for muscle tissue formation due to their biocompatibility. In this study, two sequences of ultrashort peptides were analyzed with muscle myoblast cells (C2C12) for cell viability, cell proliferation, and differentiation in 3D cell culture. The peptides were then extruded through a custom-designed robotic 3D bioprinter to create cell-laden 3D structures. These constructs were also analyzed for cell viability through live/dead assay. Results showed that 3D bioprinted structures of peptide hydrogels could be used as tissue platforms for myotube formation – a process necessary for muscle repair.

Authors and Affiliations

Wafaa Arab, Kowther Kahin, Zainab Khan, Charlotte A. E. Hauser

Keywords

Related Articles

A novel 3D printing method for cell alignment and differentiation

The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic di...

Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration

In recent years, the additive manufacture was popularly used in tissue engineering, as the various technologies for this field of research can be used. The most common method is extrusion, which is commonly used in many...

Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblasts infiltration

Electrospun polymeric nanofibrous scaffold possesses significant potential in the field of tissue engineering due to its extracellular matrix mimicking topographical features that modulate a variety of key cellular activ...

Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs

Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print c...

Creation of a vascular system for organ manufacturing

The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...

Download PDF file
  • EP ID EP678709
  • DOI -
  • Views 197
  • Downloads 0

How To Cite

Wafaa Arab, Kowther Kahin, Zainab Khan, Charlotte A. E. Hauser (2019). Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications. International Journal of Bioprinting, 5(2), -. https://europub.co.uk/articles/-A-678709