Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications

Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2

Abstract

Injured skeletal muscles which lose more than 20% of their volume, known as volumetric muscle loss, can no longer regenerate cells through self-healing. The traditional solution for recovery is through regenerative therapy. As the technology of three-dimensional (3D) bioprinting continues to advance, a new approach for tissue transplantation is using biocompatible materials arranged in 3D scaffolds for muscle repair. Ultrashort self-assembling peptide hydrogels compete as a potential biomaterial for muscle tissue formation due to their biocompatibility. In this study, two sequences of ultrashort peptides were analyzed with muscle myoblast cells (C2C12) for cell viability, cell proliferation, and differentiation in 3D cell culture. The peptides were then extruded through a custom-designed robotic 3D bioprinter to create cell-laden 3D structures. These constructs were also analyzed for cell viability through live/dead assay. Results showed that 3D bioprinted structures of peptide hydrogels could be used as tissue platforms for myotube formation – a process necessary for muscle repair.

Authors and Affiliations

Wafaa Arab, Kowther Kahin, Zainab Khan, Charlotte A. E. Hauser

Keywords

Related Articles

Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells

The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue en...

A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing

Today, additive manufacturing (AM) is implemented in medical industry and profoundly revolutionizes this area. This approach consists of producing parts by additions of layers of successive materials and offers advantage...

Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs

Bioprinting is increasingly being used for fabrication of engineered tissues for regenerative medicine, drug testing, and other biomedical applications. The success of this technology lies with the development of suitabl...

Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model

Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternativ...

Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporation

Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH valu...

Download PDF file
  • EP ID EP678709
  • DOI -
  • Views 171
  • Downloads 0

How To Cite

Wafaa Arab, Kowther Kahin, Zainab Khan, Charlotte A. E. Hauser (2019). Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications. International Journal of Bioprinting, 5(2), -. https://europub.co.uk/articles/-A-678709