Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications
Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2
Abstract
Injured skeletal muscles which lose more than 20% of their volume, known as volumetric muscle loss, can no longer regenerate cells through self-healing. The traditional solution for recovery is through regenerative therapy. As the technology of three-dimensional (3D) bioprinting continues to advance, a new approach for tissue transplantation is using biocompatible materials arranged in 3D scaffolds for muscle repair. Ultrashort self-assembling peptide hydrogels compete as a potential biomaterial for muscle tissue formation due to their biocompatibility. In this study, two sequences of ultrashort peptides were analyzed with muscle myoblast cells (C2C12) for cell viability, cell proliferation, and differentiation in 3D cell culture. The peptides were then extruded through a custom-designed robotic 3D bioprinter to create cell-laden 3D structures. These constructs were also analyzed for cell viability through live/dead assay. Results showed that 3D bioprinted structures of peptide hydrogels could be used as tissue platforms for myotube formation – a process necessary for muscle repair.
Authors and Affiliations
Wafaa Arab, Kowther Kahin, Zainab Khan, Charlotte A. E. Hauser
Near-field electrospinning of a polymer/bioactive glass composite to fabricate 3D biomimetic structures
Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioac...
Physical stimulations and their osteogenesis-inducing mechanisms
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulatin...
Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study
For more than a decade, living cells and biomaterials (typically hydrogels) are printed via laser-assisted bioprinting. Often, a thin metal layer is applied as laser-absorbing material called dynamic release layer (DRL)....
3D food printing—An innovative way of mass customization in food fabrication
About 15%–25% of the aging population suffers from swallowing difficulties, and this creates an increasing market need for mass customization of food. The food industry is investigating mass customization techniques to m...
Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity
Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir–Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents...