Fatigue strength tests of multifunctional resorbable composite plates in simulated biological conditions

Journal Title: Engineering of Biomaterials / Inżynieria Biomateriałów - Year 2018, Vol 21, Issue 147

Abstract

The article is part of a series of publications presenting the results of mechanical tests of multi-functional resorbable fixation plates. Tests were con-ducted on prototype plates in conditions simulating natural biological environment. The examinations were meant to assess the so-called “implant working time” or fatigue strength of the fixation plates. This parameter is particularly important in the case of elements subjected to time-varying loads due to the possibility of alterations to the material structure, strain strengthening or development of defects leading to the implant failure. Composite materials consisting in a polymer matrix modified with ceramic particles are quite sensitive to variable loads. Moreover, the complex geometry of the tested plates makes them more vulnerable to destruction with the critical cross-sections located at the fixing holes. Another key aspect is the biological environment where the implants will perform their functions. The temperature, pH and chemical composition are factors directly affecting the way and rate of degradation of the resorbable polymer. Degradation affects the strength characteristics, obviously weakening the material. The tests were performed on a model composed of PMMA blocks playing the role of bones with the tested plate attached with metal screws. The model was mounted in a fatigue machine and subjected to cyclic stretching. Two variants of the examinations were performed. Firstly, the model was tested in “dry” conditions; secondly - in a closed container filled with fluids simulating the biological environment (the Ringer’s solution heated to ~37°C used as the medium). The results revealed that the plates tested in “dry” conditions were endowed with different characteristics as compared to the plates exposed to the simulated biological environment.

Authors and Affiliations

K. Gryń, B. Szaraniec, J. Chłopek

Keywords

Related Articles

Preparation of psyllium husk powder based microporous composite scaffolds for tissue engineering

This study demonstrates the comparison in the method of fabrication and thus evaluates the potential of psyllium husk powder and gelatin-based composite microporous scaffolds for tissue engineering applications. The scaf...

Genotoxicity of antibacterial bioglasses obtained by sol-gel method for Salmonella typhimurium

Periodontal disease causes problems in dentistry. Surgical intervention with appropriate biomaterials for tissue regeneration is necessary in advanced stages of the disease. Therefore, the aim of this study was to determ...

Preparation and characterization of tannic acid cross-linked scaffolds made of chitosan, collagen and hyaluronic acid

Biopolymers are widely used in biomaterials science. They are biocompatible, biodegradable and non-toxic for human body. The aim of the study was to obtain scaffolds made of chitosan, collagen and hyaluronic acid modifie...

Degradacja hydrolityczna rusztowań komórkowych formowanych z terpolimerów; L-laktydu, glikolidu i TMC, oraz L-laktydu, glikolidu i ε-kaprolaktonu

Głównym celem prezentowanej pracy było zbadanie przebiegu degradacji hydrolitycznej porowatych rusztowań komórkowych wykonanych z bioresorbowalnych terpolimerów z pamięcią kształtu; L-laktydu, glikolidu i węglanu trimety...

Mechanical characterization of multifunctional resorbable composite plate for osteosynthesis

The article presents the mechanical properties of prototype multifunctional four-hole, I-shaped plate made of resorbable composite and used for osteosynthesis. Multiple tests were conducted on ready-to-use implants and r...

Download PDF file
  • EP ID EP559062
  • DOI -
  • Views 43
  • Downloads 0

How To Cite

K. Gryń, B. Szaraniec, J. Chłopek (2018). Fatigue strength tests of multifunctional resorbable composite plates in simulated biological conditions. Engineering of Biomaterials / Inżynieria Biomateriałów, 21(147), 21-30. https://europub.co.uk/articles/-A-559062