FEATURES OF SHORT-PERIOD VARIABILITY OF TOTAL ELECTRON CONTENT AT HIGH AND MIDDLE LATITUDES

Journal Title: Solar-Terrestrial Physics - Year 2021, Vol 7, Issue 4

Abstract

The study presents the results of comparative analysis of features of a short-period (with periods of internal gravity waves) variability of total electron content (TEC) in the ionosphere at middle (Novosibirsk) and high (Norilsk) latitudes over a long period of time (2003–2020). The period analyzed makes it possible to estimate not only diurnal and seasonal variations in the variability, but also its changes within the solar activity cycle. The level of TEC variability is shown to experience pronounced seasonal variations with maxima in winter months. The difference between the level of variability in winter and summer is about two times for Novosibirsk and up to seven times for Norilsk. The variability features a distinct diurnal variation; however, the diurnal dependence at the mid- and high-latitude stations differs significantly. At high latitudes, the level of variability in the winter period strictly depends on solar activity. For the mid-latitude station, there is no clear dependence of variability level on solar activity; in the years of solar maximum, on the contrary, a slight decrease in the variability is observed. In summer, the level of variability at both middle and high latitudes remains practically unchanged and does not depend on solar activity. The main features in the dynamics of variability are shown to be similar at stations located at other longitudes, except for the East American sector. The result obtained suggests that the short-period TEC variability at high latitudes is primarily related to changes in solar activity, but regular variations in the variability at midlatitudes are probably not associated with heliophysical activity. The observed increase in the level of short-period variability in the winter mid-latitude ionosphere is assumed to be related to an increase in wave activity in the stratosphere.

Authors and Affiliations

Yasyukevich A. S.

Keywords

Related Articles

DIAGNOSTICS OF EMISSION INTENSITIES AND ELECTRON DENSITY IN AURORAS BASED ON EMPIRICAL PRECIPITATION MODELS

We have studied the influence of the precipitating electron spectrum shape on the integral intensity of emissions λ391.4 nm 1NG N⁺₂, λ670.4 mn 1PG N₂, λ337.1 nm 2PG N₂, λ320.0 nm VK N₂, λ127.3 nm LBH N₂, atomic oxygen em...

ESTIMATED INFLUENCE OF STRATOSPHERIC ACTIVITY ON THE IONOSPHERE ACCORDING TO MEASUREMENTS WITH ISTP SB RAS TOOLS

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F...

STUDYING 630 NM ATOMIC OXYGEN EMISSION SOURCES DURING STRONG MAGNETIC STORMS IN THE NIGHT MID-LATITUDE IONOSPHERE

We analyze significant increases in 630 nm atomic oxygen night emissions during very strong geomagnetic storms, using optical measurements, theoretical modeling, and magnetogram inversion technique (MIT) data. It is show...

GEOMAGNETIC DISTURBANCES AT F1-LAYER HEIGHTS UNDER DIFFERENT SOLAR ACTIVITY CONDITIONS OVER NORILSK

We analyze the influence of geomagnetic disturbances on the electron density Ne at Norilsk ionospheric station (69° N; 88° E) at F1-layer heights (120–200 km). For the analysis, we have selected 25 moderate and weak geom...

SOLAR ACTIVITY RESEARCH AT THE BAIKAL ASTROPHYSICAL OBSERVATORY OF ISTP SB RAS

The article presents the main results of solar studies carried out at the Baikal Astrophysical Observatory (BAO) of the Institute of Solar-Terrestrial Physics SB RAS (ISTP SB RAS) for 40 years. It outlines the history of...

Download PDF file
  • EP ID EP700040
  • DOI 10.12737/stp-74202107
  • Views 114
  • Downloads 0

How To Cite

Yasyukevich A. S. (2021). FEATURES OF SHORT-PERIOD VARIABILITY OF TOTAL ELECTRON CONTENT AT HIGH AND MIDDLE LATITUDES. Solar-Terrestrial Physics, 7(4), -. https://europub.co.uk/articles/-A-700040