Formulation of Stiffness and Strength Characteristics of Flexible Wire Ropes and Their Application in Photovoltaic Support Structures
Journal Title: Precision Mechanics & Digital Fabrication - Year 2024, Vol 1, Issue 2
Abstract
The safety and functionality of flexible photovoltaic (PV) racking systems critically depend on understanding the force and deformation behavior of wire ropes. This study establishes mechanical equilibrium equations to derive the deformation curve, maximum displacement, and maximum tension of wire ropes subjected to loading. Analytical dimensionless equations indicate that variations in the orientation of PV modules do not affect the structural stiffness or forces exerted on the wire ropes. Engineering calculations of maximum displacement and tension are compared with results from finite element simulations, revealing less than a 1% discrepancy between the analytical and numerical outcomes. Analysis of characteristic parameter curves in relation to prestress demonstrates that the maximum deflection span ratio decreases as prestress increases, while the maximum tensile stress rises with increasing prestress. The proposed formulas are validated as both accurate and practical, effectively reflecting the changes in wire rope forces with varying prestress levels. This study provides valuable insights for the mechanical analysis and structural design of flexible PV mounting systems, offering a robust reference for future engineering applications.
Authors and Affiliations
Chuangju Zhang, Leige Xu, Pengshuai Liu
Analysis and Experimental Study of the Composite Mechanical Bulging Process for Medium-Duty Commercial Vehicle Drive Axle Housing
A novel composite mechanical bulging process suitable for the manufacture of medium-duty commercial vehicle drive axle housings is proposed. The analytical expression for the limit bulging forming coefficient of tube bla...
Formulation of Stiffness and Strength Characteristics of Flexible Wire Ropes and Their Application in Photovoltaic Support Structures
The safety and functionality of flexible photovoltaic (PV) racking systems critically depend on understanding the force and deformation behavior of wire ropes. This study establishes mechanical equilibrium equations to d...
Mathematical Modelling of the Vacuum Degassing Process for Hydrogen Removal in Precision Steel Production
Precision steel is a critical material in modern engineering, particularly in precision mechanics and high-performance construction. In this study, a mathematical model is presented to simulate the vacuum degassing (VD)...
A Gearbox Vibration Signal Compressed Sensing Method Based on the Improved GLOW Flow Model
In response to the complex characteristics of gearbox vibration signals, including high frequency, high dimensionality, non-stationarity, non-linearity, and noise interference, this paper proposes a data processing metho...
Dynamic Analysis of Continuous Pin Insertion Machines and Their Application in Precision Connector Manufacturing
In the production of high-precision electronic connectors, the proper alignment and insertion quality of pins are critical to ensuring product reliability. Any pin misalignment or deformation can lead to electrical failu...