Heat Transfer During Subcooled Boiling in Tubes (A Review)

Journal Title: Проблеми машинобудування - Year 2019, Vol 22, Issue 1

Abstract

This article provides a review of the correlations and models for determining the intensity of heat transfer during subcooled boiling in pipes. As a rule, correlations are based on dimensionless similarity numbers, while heat exchange models with subcooled boiling use the principle of superposition of the components of heat transfer during forced convection and developed nucleate boiling. Various authors propose different approaches to the implementation of the principle of superposition. This article presents an analysis of the advantages and disadvantages of the correlations and models. These advantages and disadvantages were determined both by analyzing the physical laws of subcooled boiling and by comparing the results that were obtained by the authors of this article by means of various models of subcooled boiling with the experimental data obtained during the study of heat transfer during the subcooled boiling of ammonia in a cylindrical heated tube. The tube diameter d was 6.9 mm, length L was 150 mm, inlet subcooling was ~5 K, saturation temperature range was 61…65 °C, mass flow rate was 7.5 g/s, and heat flux density range was 5…18 W/cm2. As a result of the review and comparison with the experimental data, it was determined that the existing correlations and models describe the subcooled boiling of ammonia with insufficient accuracy, especially in the area of the combined effect of forced convection and nucleate boiling. Therefore, it is necessary either to refine the existing correlations and models, or develop new models for a more precise description of the subcooled boiling heat transfer of ammonia in heated tubes in the parameter range specified above.

Authors and Affiliations

Pavlo G. Gakal, Gennadiy A. Gorbenko, Rustem Yu. Turna, Edem R. Reshitov

Keywords

Related Articles

Major Stress-Strain State of Double Support Multilayer Beams Under Concentrated Load. Part 2. Model Implementation and Calculation Results

The development of composite technologies contributes to their wide introduction into the practice of designing modern different-purpose structures. Reliable prediction of the stress-strain state of composite elements is...

Investigation of the Stress Strain State of the Layer with a Longitudinal Cylindrical Thick-Walled Tube and the Displacements Given at the Boundaries of the Layer

This paper proposes an analytical-numerical approach to solving the spatial prob-lem of the theory of elasticity for the layer with a circular cylindrical tube. A cylin-drical empty thick-walled tube is located inside th...

Modeling Heat and Mass Exchange Processes in Metal-hydride Installations

Hydrogen as an environmentally friendly energy carrier is increasingly used in various sectors of the economy of industrialized countries, primarily to improve the environmental situation. Regardless of the field of appl...

Numerical Simulation of Metal Hydride Battery Heat Conducting Matrix Heat-stressed and Deformed State

The problem of safe and effective storage of hydrogen is dealt with by many researchers in different countries. The method of storing hydrogen in a chemically bound state in metal hydride accumulators has a number of adv...

Methodology to Solve Multi-Dimentional Sphere Packing Problems

This paper discusses the problem of optimally packing spheres of various dimensions into containers of arbitrary geometrical shapes. According to the international classification, this problem belongs to Sphere Packing P...

Download PDF file
  • EP ID EP622689
  • DOI 10.15407/pmach2019.01.009
  • Views 66
  • Downloads 0

How To Cite

Pavlo G. Gakal, Gennadiy A. Gorbenko, Rustem Yu. Turna, Edem R. Reshitov (2019). Heat Transfer During Subcooled Boiling in Tubes (A Review). Проблеми машинобудування, 22(1), 9-16. https://europub.co.uk/articles/-A-622689