Hsa-miR-590-5p Interaction with SMAD3 Transcript Supports Its Regulatory Effect on The TGFβ Signaling Pathway
Journal Title: Cell Journal(Yakhteh) - Year 2016, Vol 18, Issue 1
Abstract
Objective SMAD proteins are the core players of the transforming growth factor-beta (TGFβ) signaling pathway, a pathway which is involved in cell proliferation, differentiation and migration. On the other hand, hsa-miRNA-590-5p (miR-590-5p) is known to have a negative regulatory effect on TGFβ signaling pathway receptors. Since, RNAhybrid analy- sis suggested SMAD3 as a bona fide target gene for miR-590, we intended to investigate the effect of miR-590-5p on SMAD3 transcription. Materials and Methods In this experimental study, miR-590-5p was overexpressed in different cell lines and its increased expression was detected through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Western blot analysis was then used to investigate the effect of miR-590-5p overexpression on SMAD3 protein level. Next, the direct interaction of miR-590-5p with the 3´-UTR sequence of SMAD3 transcript was investigated using the dual luciferase assay. Finally, flow cytometery was used to inves- tigate the effect of miR-590-5p overexpression on cell cycle progression in HeLa and SW480 cell lines. Results miR-590-5p was overexpressed in the SW480 cell line and its overexpression resulted in significant reduction of the SMAD3 protein level. Consistently, direct interaction of miR-590-5p with 3´-UTR sequence of SMAD3 was detected. Finally, miR-590-5p over- expression did not show a significant effect on cell cycle progression of Hela and SW480 cell lines. Conclusion Consistent with previous reports about the negative regulatory effect of miR-590 on TGFβ receptors, our data suggest that miR-590-5p also attenuates the TGFβ signaling pathway through down-regulation of SMAD3.
Authors and Affiliations
Bahram Mohammad Soltani
SDF-1α/CXCR4 Axis Mediates The Migration Of Mesenchymal Stem Cells To The Hypoxic-Ischemic Brain Lesion In A Rat Model
Objective: Transplantation of mesenchymal stem cells (MSCs) can promote functional recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic l...
Evaluation of Hydro-Alcoholic Extract of Trifolium Pratens L. for Its Anti-Cancer Potential on U87MG Cell Line
Objective: Glioblastoma multiforme is the most malignant form of brain tumors. Trifolium pratense L. has been suggested for cancer treatment in traditional medicine. Here we have investigated the effects of T. pratense e...
In Vitro Differentiation of Human Umbilical Cord Blood CD133+ Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells
Objective: Pancreatic stroma plays an important role in the induction of pancreatic cells by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor...
Association of ANRIL Expression with Coronary Artery Disease in Type 2 Diabetic Patients
Objective: ANRIL is an important antisense noncoding RNA gene in the INK4 locus (9p21.3), a hot spot region associated with multiple disorders including coronary artery disease (CAD), type 2 diabetes mellitus (T2DM) and...
Effects of Estradiol on Histological Parameters and Secretory Ability of Pituitary Mammotrophs in Ovariectomized Female Rats
Objective: Estrogen replacement therapy remains current as a therapeutic approach to treat menopausal symptoms and may significantly affect hormone-producing cells in the female pituitaries. The aim of this study was to...