HYBRID OPTIMIZATION INTEGRATED INTRUSION DETECTION SYSTEM IN WSN USING ELMAN NETWORK
Journal Title: International Journal of Data Science and Artificial Intelligence - Year 2024, Vol 2, Issue 02
Abstract
Wireless Sensor Networks (WSNs) increases the usage of integrated systems and areas which attracts the attention of attackers. However, WSNs are vulnerable to different kinds of security threats and attacks. To ensure their security, an effective Intrusion Detection System (IDS) need to be in place to detect these attacks even under these constraints. The traditional IDS are less effective as these malicious attacks are becoming more intelligent, frequent, and complex. To overcome these challenges, this paper proposes a novel Improved Deep Neural Network Integrated Intrusion Detection System in WSN (IIDS-NET) technique has been proposed, which increases the energy efficiency in the WSN network. Initially, an optimal CH is selected via Tom and Jerry optimization algorithm (TJOA) based on the Residual energy and Node Centrality. The proposed scheme makes use of Improved Elman Spike Neural Network (IESNN) technique is implemented to detect the intrusion nodes and to blocks the suspicious or malicious activity in the wireless networks. Finally, the Aquila-Sooty Tern Optimization Algorithm (AQSOA) is used to find the optimal route for sending the data between the sensor nodes and the base stations. The proposed scheme is simulated by using Cloud simulator (CloudSim) and a comparison is made between proposed IIDS-NET and existing approaches such as GWOSVM-IDS, EPK-DNN, FL-SCNN-Bi-LSTM and SG-IDS in terms of detection accuracy, energy consumption, and throughput. The proposed HOPI-NET approach outperforms the existing techniques such as GWOSVM-IDS, EPK-DNN, FL-SCNN-Bi-LSTM and SG-IDS in terms of energy consumption of 120.73%, 198.68%, 193.34%, 187.73%, and 165.88% respectively.
Authors and Affiliations
B. Muthu Kumar, J. Ragaventhiran, V. Neela
REAL TIME MASKED FACE RECOGNITION USING DEEP LEARNING BASED YOLOV4 NETWORK
A global outbreak of COVID-19 has been spreading rapidly since 2019. This pandemic is making human existence more complex and intricate and thousands have been killed by this disease. A lack of antiviral medications is o...
A NOVEL INTERNET OF THINGS-BASED ELECTROCARDIOGRAM DENOISING METHOD USING MEDIAN MODIFIED WEINER AND EXTENDED KALMAN FILTERS
The Internet of Things (IoT) offers healthcare applications that benefit customers, physicians, hospitals, and insurance companies. Wearable technology like fitness bands and other wirelessly connected gadgets like blood...
DEEP LEARNING BASED WEARABLE DEVICE FOR OLDER PEOPLE MONITORINGSYSTEM
Activity recognition (AR) systems for older people are common in residential health care settings such as hospitals and nursing homes, thus numerous methodologies and studies have been developed to improve the effectiven...
IOT-ENABLED PROTEIN STRUCTURE CLASSIFICATION VIA CSA-PSO BASED CD4.5 CLASSIFIER
Data mining is a technique for obtaining useful information from vast amounts of information. Big data refers to large amounts of complicated information that is processed, particularly in relation to biological processe...
DYNAMIC LOAD BALANCING IN CLOUD COMPUTING USING HYBRID KOOKABURRA-PELICAN OPTIMIZATION ALGORITHMS
Cloud Computing (CC) technology facilitates virtualized computer resources to users via service providers. Load balancing assumes a critical role in distributing dynamic workloads across cloud systems, ensuring equitable...