IDENTIFYING THREATS IN COMPUTER NETWORK BASED ON MULTILAYER NEURAL NETWORK

Journal Title: Наука та прогрес транспорту - Year 2018, Vol 0, Issue 2

Abstract

Purpose. Currently, there appear more often the reports of penetration into computer networks and attacks on the Web-server. Attacks are divided into the following categories: DoS, U2R, R2L, Probe. The purpose of the article is to identify threats in a computer network based on network traffic parameters using neural network technology, which will protect the server. Methodology. The detection of such threats as Back, Buffer_overflow, Quess_password, Ipsweep, Neptune in the computer network is implemented on the basis of analysis and processing of data on the parameters of network connections that use the TCP/IP protocol stack using the 19-1-25-5 neural network configuration in the Fann Explorer program. When simulating the operation of the neural network, a training (430 examples), a testing (200 examples) and a control sample (25 examples) were used, based on an open KDDCUP-99 database of 500000 connection records. Findings. The neural network created on the control sample determined an error of 0.322. It is determined that the configuration network 19-1-25-5 copes well with such attacks as Back, Buffer_overflow and Ipsweep. To detect the attacks of Quess_password and Neptune, the task of 19 network traffic parameters is not enough. Originality. We obtained dependencies of the neural network training time (number of epochs) on the number of neurons in the hidden layer (from 10 to 55) and the number of hidden layers (from 1 to 4). When the number of neurons in the hidden layer increases, the neural network by Batch algorithm is trained almost three times faster than the neural network by Resilient algorithm. When the number of hidden layers increases, the neural network by Resilient algorithm is trained almost twice as fast as that by Incremental algorithm. Practical value. Based on the network traffic parameters, the use of 19-1-25-5 configuration neural network will allow to detect in real time the computer network threats Back, Buffer_overflow, Quess_password, Ipsweep, Neptune and to perform appropriate monitoring.

Authors and Affiliations

I. V. Zhukovyts’kyy, V. M. Pakhomovа

Keywords

Related Articles

SIMULATION OF LOCOMOTIVE REPAIR ORGANIZATION BY THE METHODS OF QUEUE SYSTEMS THEORY

Purpose. The article is aimed to evaluate the influence of locomotives` operation and reliability indicators on the system of locomotives repair organization in depot, using the methods of queue theory. Methodology. The...

ОСОБЛИВОСТІ КОМПЛЕКСУ БУРОВИБУХОВИХ РОБІТ ПРИ БУДІВНИЦТВІ БЕСКИДСЬКОГО ТУНЕЛЮ

Мета. В статті необхідно проаналізувати можливість розробки технології проведення буровибухових робіт та підвищення її ефективності при будівництві Бескидського тунелю в складних інженерно-геологічних умовах. Методика. А...

PLAGIARISM DETECTION PROBLEMS AND ANALYSIS SOFTWARE TOOLS FOR ITS SOLVE

Purpose. This study is aimed at: 1) the definition of plagiarism in texts on formal and natural languages, building a taxonomy of plagiarism; 2) identify major problems of plagiarism detection when using automated tools...

ПЕРЕГОРОДЧАСТИЙ ЗМІШУВАЧ КОРИДОРНОГО ТИПУ З ПОПЕРЕЧНИМИ ПОРИСТИМИ ПЕРЕГОРОДКАМИ

Мета. У роботі необхідно розглянути підвищення ефективності роботи перегородчастого змішувача коридорного типу за рахунок встановлення поперечних пористих перегородок у коридорах змішувача, виконаних із гравію (або з інш...

ДОСЛІДЖЕННЯ РАЦІОНАЛЬНИХ ХАРАКТЕРИСТИК КАНАЛІВ ПЕРЕДАЧІ ДАНИХ ІНФОРМАЦІЙНО-ВИМІРЮВАЛЬНОЇ СИСТЕМИ

Мета. Стаття ставить за мету визначення раціональних параметрів інтерфейсів передачі даних інформаційно-вимірювальної системи випробувань гідравлічних передач тепловозів, а також знаходження ступеня відмовостійкості в рі...

Download PDF file
  • EP ID EP364819
  • DOI 10.15802/stp2018/130797
  • Views 94
  • Downloads 0

How To Cite

I. V. Zhukovyts’kyy, V. M. Pakhomovа (2018). IDENTIFYING THREATS IN COMPUTER NETWORK BASED ON MULTILAYER NEURAL NETWORK. Наука та прогрес транспорту, 0(2), 114-123. https://europub.co.uk/articles/-A-364819