IDENTIFYING THREATS IN COMPUTER NETWORK BASED ON MULTILAYER NEURAL NETWORK

Journal Title: Наука та прогрес транспорту - Year 2018, Vol 0, Issue 2

Abstract

Purpose. Currently, there appear more often the reports of penetration into computer networks and attacks on the Web-server. Attacks are divided into the following categories: DoS, U2R, R2L, Probe. The purpose of the article is to identify threats in a computer network based on network traffic parameters using neural network technology, which will protect the server. Methodology. The detection of such threats as Back, Buffer_overflow, Quess_password, Ipsweep, Neptune in the computer network is implemented on the basis of analysis and processing of data on the parameters of network connections that use the TCP/IP protocol stack using the 19-1-25-5 neural network configuration in the Fann Explorer program. When simulating the operation of the neural network, a training (430 examples), a testing (200 examples) and a control sample (25 examples) were used, based on an open KDDCUP-99 database of 500000 connection records. Findings. The neural network created on the control sample determined an error of 0.322. It is determined that the configuration network 19-1-25-5 copes well with such attacks as Back, Buffer_overflow and Ipsweep. To detect the attacks of Quess_password and Neptune, the task of 19 network traffic parameters is not enough. Originality. We obtained dependencies of the neural network training time (number of epochs) on the number of neurons in the hidden layer (from 10 to 55) and the number of hidden layers (from 1 to 4). When the number of neurons in the hidden layer increases, the neural network by Batch algorithm is trained almost three times faster than the neural network by Resilient algorithm. When the number of hidden layers increases, the neural network by Resilient algorithm is trained almost twice as fast as that by Incremental algorithm. Practical value. Based on the network traffic parameters, the use of 19-1-25-5 configuration neural network will allow to detect in real time the computer network threats Back, Buffer_overflow, Quess_password, Ipsweep, Neptune and to perform appropriate monitoring.

Authors and Affiliations

I. V. Zhukovyts’kyy, V. M. Pakhomovа

Keywords

Related Articles

ИСПОЛЬЗОВАНИЕ МИКРОКОНТРОЛЛЕРА ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ ВАЛА ГИДРАВЛИЧЕСКОЙ ПЕРЕДАЧИ ТЕПЛОВОЗА

Цель. Статья предусматривает рассмотрение процесса разработки и усовершенствования средств сбора тахометрических данных информационно-измерительной системы испытания гидравлических передач тепловозов. Это даст возможност...

ПРОБЛЕМА УНОСА УГОЛЬНОЙ ПЫЛИ

Цель. В работе необходимо провести разработку 2D численных моделей для прогноза загрязнения атмосферы при транспортировке сыпучих грузов в железнодорожном вагоне, а также способа защиты окружающей среды и примагистральны...

EXPERIMENTAL STUDY OF HORIZONTAL PRESSURE DISTRIBUTION ON CORRUGATED STEEL SILO WALLS

Purpose. The paper aims: 1) qualitative assessment of the nature of the container corrugated wall deformation caused by the load from bulk materials. 2) determination of the horizontal pressure redistribution scheme for...

ВИБІР СИСТЕМИ УТРИМАННЯ ЛОКОМОТИВІВ ІЗ УРАХУВАННЯМ ВПЛИВУ ЗАЛЕЖНИХ ВІДМОВ

Мета. Основною метою роботи є підвищення ефективності використання локомотивів за рахунок вибору раціональної системи утримання, яка враховує оцінку впливу залежних відмов на вартість їх життєвого циклу. Методика. Актуал...

ADVANTAGES OF RAPID METHOD FOR DETERMINING SCALE MASS AND DECARBURIZED LAYER OF ROLLED COIL STEEL

Purpose. To determine the universal empirical relationships that allow for operational calculation of scale mass and decarbonized layer depth based on the parameters of the technological process for rolled coil steel pro...

Download PDF file
  • EP ID EP364819
  • DOI 10.15802/stp2018/130797
  • Views 86
  • Downloads 0

How To Cite

I. V. Zhukovyts’kyy, V. M. Pakhomovа (2018). IDENTIFYING THREATS IN COMPUTER NETWORK BASED ON MULTILAYER NEURAL NETWORK. Наука та прогрес транспорту, 0(2), 114-123. https://europub.co.uk/articles/-A-364819