Images compression by using cubic spline-functions methods

Abstract

<p><em>The object of research is image compression algorithms based on mathematical methods. The main problem with image compression is loss of quality during recovery. The approach is proposed in which the user can determine the quality of the reconstructed image itself. This is achieved due to the use of the spline interpolation method, which allows to set the compression ratio, thus controlling the quality of the decoded image.</em></p><p><em>The use of the spline function for image compression makes it possible to reduce the processing time of files due to the simplicity of the mathematical model of the algorithm. Given the accuracy of the restored image, the algorithm determines the size of the compressed file, depending on the color scale.</em></p><p><em>As a result of the analysis of the proposed development, the compression coefficients are shown, which show that the size of the compressed image can be smaller than the original image by 50</em><em>–</em><em>70</em><em> </em><em>%. The decoding is performed using known spline function coefficients</em><em>.</em><em> </em><em>The result is compared with the original file. The difference between the intensity of the points of the source and decoded images determines the quality of the restoration.</em></p><p><em>An algorithm is obtained that allows one to specify the accuracy of the reconstructed image. This result depends on the weighting coefficients of the spline function, which affect the accuracy of the construction of the approximating polynomial. A feature of the proposed approach is the ability of the user to specify the accuracy and quality of the image after decoding. This is achieved due to the fact that points close in intensity value are restored with a small error.</em></p><p><em>In this paper, let’s propose an approach involving the sequential extraction of blocks of points of equal intensity. For the selected blocks, an approximating polynomial is constructed based on the spline function, and the coefficients of the polynomial are transferred to a file containing information for image reconstruction. So it is possible to obtain large compression ratios by building a polynomial for blocks containing points that are close in intensity.</em></p>

Authors and Affiliations

Kateryna Kotsiubivska, Olena Chaikovska, Maryna Tolmach, Svitlana Khrushch

Keywords

Related Articles

Designing security of personal data in distributed health care platform

<p><em>The object of research is the design of EHR system capable for both patient-physician communication and secure and privacy preserving cross-organisational analytical collaboration. Constant patient monitoring and...

Development of gas transportation companies' economic security level evaluation method by taxonometric method

<p><em>The object of research is the process of assessing the state of ensuring economic security of gas transport enterprises. One of the biggest problems faced by scientists in determining the level of economic securit...

Study of the tax management problem

<p><em>The subject of research is the field of taxation-related activities. The most topical issues in the field of taxation are highlighted, in particular:</em></p><ul><li><em>tax administration studies;</em></li><li><e...

Correction of technological characteristics of protein-fat mixture by expanding the component composition

<p><em>The object of research is the technological characteristics of the protein-fat mixture of increased nutritional value, depending on the addition of vegetable oil as a component. The protein-fat mixture is a mixtur...

Theoretical analysis of the adaptive system for suppression of the interference concentrated on a spectrum

<p><em>The object of research is the process of interference suppression in a passive radiometric receiver, centered over the interference spectrum, with a random or varying frequency. Noise immunity can be increased by...

Download PDF file
  • EP ID EP527420
  • DOI 10.15587/2312-8372.2018.134978
  • Views 139
  • Downloads 0

How To Cite

Kateryna Kotsiubivska, Olena Chaikovska, Maryna Tolmach, Svitlana Khrushch (2018). Images compression by using cubic spline-functions methods. Технологический аудит и резервы производства, 3(2), 4-10. https://europub.co.uk/articles/-A-527420