Independence of substituent contributions to the transport of small-molecule permeants in lipid bilayer
Journal Title: The AAPS Journal - Year 2000, Vol 2, Issue 2
Abstract
Purpose: To explore the independence of functional group contributions to permeability of nonelectrolytes across egg lecithin bilayers. Methods. The transport rates were measured of a series of α-substituted p-methylhippuric acids (-H,-Cl,-OCH3,-CN,-OH,-COOH, and-CONH2) across egg lecithin lipid bilayers, in the form of large unilamellar vesicles (LUVs) at 25EC. Intrinsic permeability coefficients (PHA) were calculated from apparent permeability coefficients (Papp) measured as a function of pH. Group contributions to the free energy of transfer from water into the barrier domain, Δ(ΔGE)P,X, were calculated for the substituents and compared to the contributions of these groups when attached to p-toluic acid measured earlier. The Δ(ΔGE)P,X values from permeability data were also correlated with Δ(ΔGE)PC,X values of partitioning from water into organic solvents to determine the physicochemical selectivity of the barrier domain. Results. Papp values in LUVs were found to vary approximately linearly with the fraction of neutral permeant over a pH range of 5.5 to 10.5, suggesting that the transport of the ionized species is negligible over this pH range. The Δ(ΔGE)P,X values from the 2 series of compounds appear to be the same, indicating that the functional group contributions are independent. 1,9-Decadiene was found to be the most similar to the chemical environment of the barrier domain. Conclusions. Functional group contributions to transport across egg lecithin bilayers appear to be independent of the compound to which they are attached, even though the thickness of the barrier domain in lipid bilayers is approximately the same as the extended length of the permeant.
Authors and Affiliations
Peter T. Mayer, Tian-Xiang Xiang, Bradley D. Anderson
Peptidomics of the Prolyl Peptidases
The prolyl peptidases are a family of enzymes characterized by a biochemical preference for cleaving proline-containing peptides. The members of this enzyme family include prolyl endopeptidase, prolyl endopeptidase-like,...
Determination of membrane protein glycation in diabetic tissue
Diabetes-associated hyperglycemia causes glycation of proteins at reactive amino groups, which can adversely affect protein function Although the effects of glycation on soluble proteins are well characterized, there is...
Mapping the Target Localization and Biodistribution of Non-Radiolabeled VMAT2 Ligands in rat Brain
Imaging targeting vesicular monoamine transporter (VMAT2) alterations is a sensitive tool for early diagnosis of Parkinson’s disease. Our group has reported several novel 2-amino-DTBZ derivatives as potential VMA...
An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations
Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, predictio...
Stabilized dynorphin derivatives for modulating antinociceptive activity in morphine tolerant rats: Effect of different routes of administration
Dynorphins, such as dynorphin A(1–13) (Dyn A(1–13)), have been shown to enhance analgesia in morphine-tolerant animals, despite their very short half-life after intravenous administration. The potential u...