Index of pseudo-projectively-symmetric semi-Riemannian manifolds
Journal Title: Карпатські математичні публікації - Year 2015, Vol 7, Issue 1
Abstract
The index of ˜∇-pseudo-projectively symmetric and in particular for ˜∇-projectively symmetric semi-Riemannian manifolds, where ˜∇ is Ricci symmetric metric connection, are discussed.
Authors and Affiliations
P. Gupta
Fourier coefficients associated with the Riemann zeta-function
We study the Riemann zeta-function $\zeta(s)$ by a Fourier series method. The summation of $\log|\zeta(s)|$ with the kernel $1/|s|^{6}$ on the critical line $\mathrm{Re}\; s = \frac{1}{2}$ is the main result of our inves...
Hypercyclic operators on algebra of symmetric analytic functions on $\ell_p$
In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\mathbb{C}^n)$ using polynomial automorphisms of $\mathbb{C}^n$ and symmetric analytic functions on $\ell_p.$ In particular...
$\omega$-Euclidean domain and Laurent series
It is proved that a commutative domain $R$ is $\omega$-Euclidean if and only if the ring of formal Laurent series over $R$ is $\omega$-Euclidean domain. It is also proved that every singular matrice over ring of formal L...
A multidimensional generalization of the Rutishauser qd-algorithm
In this paper the regular multidimensional C-fraction with independent variables, which is a generalization of regular C-fraction, is considered. An algorithm of calculation of the coefficients of the regular multidimens...
On the growth of a composition of entire functions
Let $\gamma$ be a positive continuous on $[0,\,+\infty)$ function increasing to $+\infty$ and $f$ and $g$ be arbitrary entire functions of positive lower order and finite order. In order to $$ \lim\limits_{r\to+\infty}...