Influence of calcination processing on microstructural characteristics and activity index of recycled fine powder

Journal Title: China Powder Science and Technology - Year 2024, Vol 30, Issue 5

Abstract

Objective Recycled fine powder (RFP) is microscaled granules generated in the preparation of recycled aggregates by a process of crushing of construction or demolition wastes. Some feasible ways have been developed to realize the resourced utilization of RFP, of which with the most adaptable one being as the active admixture for the production of Portland cement or commercial concrete. The higher the pozzolanic activity of RFP is, the greater the utilization rate that can be achieved. The process of calcination at a temperature not exceeding 1 000 ℃ is generally esteemed as one of the most effective ways to enhance the economic and technological results of RFP as concrete admixture. However, the activation mechanism of RFP in the process of high temperature calcination may not consistently explain the experimental results in any cases, since the the efficiency of calcination is apparently depending on the source of RFP material and the temperature regime of the calcination. A strong requirement arises subsequently to clarify the activization mechanism of RFP in the process of high temperature calcination. Methods In this paper, RFP specimens were calcined at a certain temperature ranging from 600 to 900 ℃, while the calcination time was adjusted in the range of 0.5 to 3.0 hours. The as-prepared RFP specimens were used to partly replace the Portland cement at a weight ratio of 30% for the preparation of standard mortar with a water-to-cement (W-C) ratio of 0.5 by weight and a weight ratio of 3∶1 for the standard sand to Portland cement. Changes in the compressive strength of such mortar blocks after the standard curing of 7 d and 28 d were investigated in details to reveal the effect of high temperature calcination on the pozzolanic activity of RFP, followed by the measurements and discussion of the microstructural characteristics of RFP by means of comprehensive thermal analysis, i.e. thermal gravity (TG) and differential scanning calorimeter ( DSC ), and X-ray diffraction (XRD) to demonstrate the phase changes of RFP during the high-temperature calcination. Results and Discussion When the calcination temperature increased from 600 to 900 °C step by step, the activity index of calcined RFP was found to increase evidently with the increasing temperature for calcination, but further elevation of calcination temperature higher than 600 °C was not proposed due to the lowering of the activity index. Similar results was observed from the activity index tests of RFP calcined at 600 °C with different time, in which the activity index of RFP was found to increase apparently when the calcination time was not longer than 1.5 hours, but further increase of calcination time gave rise of a relative low activity index from the obtained RFP. Therefore, the suggested calcination conditions for RFP were to be 600 °C in temperature and 1.0~1.5 h in time, which could bring forth of a maximum activity index of 90.19% at the age of 28 d. It is also found that the as-prepared RFP resulted in a relative high index of pozzolanic reactivity at the age of 7 d compared to that at 28 d. Furthermore, microstructural characterizaion under TG-DSC and XRD showed that the calcination being carried out at 600 °C brought forth of an appreciable change of microscaled structure in RFP, i.e. the dehydration of clay minerals such as kaolinite, as well as the hydrated products of Portland cement including calcium hydroxide and calcium silicate hydrate ( C-S-H), which must be helpful to improve the pozzolanic activity of RFP. However, high temperature calcination at 800 to 900 °C resulted in the generation of low-activity products such as spinel (Al2O3·SiO2) or gehlenite (2CaO·Al2O3·SiO2, C2AS), and thus made a negative effect on the pozzolanic activity of RFP. The calcination of hydrated Portland cement at 900 °C did give rise to the generation of C2S rather than C2AS. Conclusion The processing of high-temperature calcination is evidently helpful to upgrade the pozzolanic activity of RFP, but the calcination regime must be coordinated with the chemical composition and mineral components of RFP. As a result, the calcination of RFP in laboratory is proposed to be carried out at 600 °C in temperature and 1.0 to 1.5 h in time to realize an optimized improvement of its pozzolanic activity, which can be attributed to the dehydration and amorphization of clay minerals, as well as the thermal decomposition of hydrated Portland cement, especially C-S-H.

Authors and Affiliations

Yanni LIU, Xiaorong WU, Gang WANG, Mingyu ZHAO, Yu Tong

Keywords

Related Articles

Progress on design methods of Cr-doped ultra-broadband near-infrared luminescent materials

Progress This review discusses the two common valence states (+3 and +4) and three luminescent centers of Cr ions in NIR fluorescent materials: hexacoordinated Cr3+, tetracoordinated Cr3+, and tetracoordinated Cr4+...

Mechanical properties of oil well cement reinforced by silica-coated surface of sepiolite fiber

Objective Fiber reinforcement proves to be an effective approach in enhancing the mechanical properties of oil well cement. Sepiolite fibers, known for their remarkable dispersibility in cement slurry and strong bonding...

Analysis and application of low-temperature economizer erosion induced by two-phase flow

Objective To enhance the dust removal efficiency of electrostatic precipitators, especially for the removal of fine particulate matter like PM2.5, a low-temperature economizer is often integrated into a sub-low-tempera...

Progress in preparation and pervaporation of FAU zeolite membranes

Progress Over recent decades, significant advancements have been made in synthesizing and applying FAU zeolite membranes for pervaporation. Various synthesis methods, including in-situ synthesis, dry gel conversion,...

Color calibration and characterization of particle images

Objective Particle color is an important parameter across various sectors, reflecting the composition, purity, and quality of particles. Different particles colors may also have different physical and chemical propert...

Download PDF file
  • EP ID EP749280
  • DOI 10.13732/j.issn.1008-5548.2024.05.010
  • Views 25
  • Downloads 0

How To Cite

Yanni LIU, Xiaorong WU, Gang WANG, Mingyu ZHAO, Yu Tong (2024). Influence of calcination processing on microstructural characteristics and activity index of recycled fine powder. China Powder Science and Technology, 30(5), -. https://europub.co.uk/articles/-A-749280