Invariant idempotent measures
Journal Title: Карпатські математичні публікації - Year 2018, Vol 10, Issue 1
Abstract
The idempotent mathematics is a part of mathematics in which arithmetic operations in the reals are replaced by idempotent operations. In the idempotent mathematics, the notion of idempotent measure (Maslov measure) is a counterpart of the notion of probability measure. The idempotent measures found numerous applications in mathematics and related areas, in particular, the optimization theory, mathematical morphology, and game theory. In this note we introduce the notion of invariant idempotent measure for an iterated function system in a complete metric space. This is an idempotent counterpart of the notion of invariant probability measure defined by Hutchinson. Remark that the notion of invariant idempotent measure was previously considered by the authors for the class of ultrametric spaces. One of the main results is the existence and uniqueness theorem for the invariant idempotent measures in complete metric spaces. Unlikely to the corresponding Hutchinson's result for invariant probability measures, our proof does not rely on metrization of the space of idempotent measures. An analogous result can be also proved for the so-called in-homogeneous idempotent measures in complete metric spaces. Also, our considerations can be extended to the case of the max-min measures in complete metric spaces.
Authors and Affiliations
N. Mazurenko, M. Zarichnyi
Wick calculus on spaces of regular generalized functions of Levy white noise analysis
Many objects of the Gaussian white noise analysis (spaces of test and generalized functions, stochastic integrals and derivatives, etc.) can be constructed and studied in terms of so-called chaotic decompositions, based...
Superextensions of three-element semigroups
A family $\mathcal{A}$ of non-empty subsets of a set $X$ is called an {\em upfamily} if for each set $A\in\mathcal{A}$ any set $B\supset A$ belongs to $\mathcal{A}$. An upfamily $\mathcal L$ of subsets of $X$ is said to...
Coincidence point theorems for $\varphi-\psi-$contraction mappings in metric spaces involving a graph
Some new coupled coincidence and coupled common fixed point theorems for $\varphi-\psi-$contraction mappings are established. We have also an application to some integral system to support the results.
Wiman's inequality for analytic functions in D×C with rapidly oscillating coefficients
Let A2 be a class of analytic function f represented by power series of the from f(z)=f(z1,z2)=+∞∑n+m=0anmzn1zm2 with the domain of convergence T={z∈C2:|z1|<1,|z2|<+∞} such that ∂∂z2f(z1,z2)≢0 in T and there exists r0...
New approach to derivation of quantum kinetic equations with initial correlations
We propose a new approach to the derivation of kinetic equations from dynamics of large particle quantum systems, involving correlations of particle states at initial time. The developed approach is based on the descript...