Invo-regular unital rings
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2018, Vol 72, Issue 1
Abstract
It was asked by Nicholson (Comm. Algebra, 1999) whether or not unit-regular rings are themselves strongly clean. Although they are clean as proved by Camillo–Khurana (Comm. Algebra, 2001), recently Nielsen and ˇSter showed in Trans. Amer. Math. Soc., 2018 that there exists a unit-regular ring which is not strongly clean. However, we define here a proper subclass of rings of the class of unit-regular rings, called invo-regular rings, and establish that they are strongly clean. Interestingly, without any concrete indications a priori, these rings are manifestly even commutative invo-clean as defined by the author in Commun. Korean Math. Soc., 2017.
Authors and Affiliations
Peter Danchev
Generalized trend constants of Lipschitz mappings
In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point...
Convolution conditions for bounded α-starlike functions of complex order
Let A be the class of analytic functions in the unit disc U of the complex plane C with the normalization f(0)=f′(0)−1=0. We introduce a subclass S∗M(α,b) of A, which unifies the classes of bounded starlike and convex fu...
The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's theorem the Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise converge...
Some properties for α-starlike functions with respect to k-symmetric points of complex order
In the present work, we introduce the subclass Tkγ,α(φ), of starlike functions with respect to k-symmetric points of complex order γ (γ≠0) in the open unit disc △. Some interesting subordination criteria, inclusion relat...
An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
The main result establishes that a weak solution of degenerate nonlinear elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.