Lateral continuity and orthogonally additive operators
Journal Title: Карпатські математичні публікації - Year 2015, Vol 7, Issue 1
Abstract
We generalize the notion of a laterally convergent net from increasing nets to general ones and study the corresponding lateral continuity of maps. The main result asserts that, the lateral continuity of an orthogonally additive operator is equivalent to its continuity at zero. This theorem holds for operators that send laterally convergent nets to any type convergent nets (laterally, order or norm convergent).
Authors and Affiliations
A. Gumenchuk
Coupled fixed point results on metric spaces defined by binary operations
In parallel with the various generalizations of the Banach fixed point theorem in metric spaces, this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy metric spaces, unifo...
Properties of distance spaces with power triangle inequalities
Metric spaces provide a framework for analysis and have several very useful properties. Many of these properties follow in part from the triangle inequality. However, there are several applications in which the triangle...
Some fixed point results in complete generalized metric spaces
The Banach contraction principle is the important result, that has many applications. Some authors\- were interested in this principle in various metric spaces. Branciari A. initiated the notion of the generalized metric...
On the growth of a composition of entire functions
Let $\gamma$ be a positive continuous on $[0,\,+\infty)$ function increasing to $+\infty$ and $f$ and $g$ be arbitrary entire functions of positive lower order and finite order. In order to $$ \lim\limits_{r\to+\infty}...
Wiman's inequality for analytic functions in D×C with rapidly oscillating coefficients
Let A2 be a class of analytic function f represented by power series of the from f(z)=f(z1,z2)=+∞∑n+m=0anmzn1zm2 with the domain of convergence T={z∈C2:|z1|<1,|z2|<+∞} such that ∂∂z2f(z1,z2)≢0 in T and there exists r0...