Leveraging Artificial Intelligence for Enhanced Sustainable Energy Management
Journal Title: Journal of Sustainability for Energy - Year 2024, Vol 3, Issue 1
Abstract
The integration of Artificial Intelligence (AI) into sustainable energy management presents a transformative opportunity to elevate the sustainability, reliability, and efficiency of energy systems. This article conducts an exhaustive analysis of the critical aspects concerning the AI-sustainable energy nexus, encompassing the challenges in technological integration and the facilitation of intelligent decision-making processes pivotal for sustainable energy frameworks. It is demonstrated that AI applications, ranging from optimization algorithms to predictive analytics, possess a revolutionary capacity to bolster intelligent decision-making in sustainable energy. However, this integration is not without its challenges, which span technological complexities and socio-economic impacts. The article underscores the imperative for deploying AI in a manner that is transparent, equitable, and inclusive. Best practices and solutions are proposed to navigate these challenges effectively. Additionally, the discourse extends to recent advancements in AI, including edge computing, quantum computing, and explainable AI, offering insights into the evolving landscape of sustainable energy. Future research directions are delineated, emphasizing the importance of enhancing explainability, mitigating bias, advancing privacy-preserving techniques, examining socio-economic ramifications, exploring models of human-AI collaboration, fortifying security measures, and evaluating the impact of emerging technologies. This comprehensive analysis aims to inform academics, practitioners, and policymakers, guiding the creation of a resilient and sustainable energy future.
Authors and Affiliations
Swapandeep Kaur, Raman Kumar, Kanwardeep Singh, Yinglai Huang
Optimization of Laminar Flow in Non-Circular Ducts: A Comprehensive CFD Analysis
This study presents a detailed Computational fluid dynamics (CFD) analysis, focusing on optimizing laminar flow within non-circular ducts, specifically those with square, rectangular, and triangular configurations. The s...
Mixed Combustion Characteristics of Various Biomass Particles
As a promising pollutant emission reduction technology, biomass mixed combustion has attracted widespread attention worldwide. This paper aimed to study the characteristics of biomass mixed combustion and temperature dis...
Techno-Economic Evaluation of Hybrid Photovoltaic-Wind Energy Systems for Indonesian Government Buildings
The burgeoning population in Indonesia necessitates an escalation in energy provision. The reliance on diminishing fossil fuels, coupled with their adverse environmental repercussions, propels the exploration of renewabl...
Hydrogen-Enriched Compressed Natural Gas Transition for Low-Emission Operation in Stationary Genset Engines
The degradation of ambient air quality in urban regions of India has been exacerbated by the expansion of automobile fleets and stationary engines. In response, the Central Pollution Control Board (CPCB), under directive...
Enhancement of Thermal Efficiency in Gas-Fired Heaters Through a Novel Double-Walled Chimney Design: Experimental and CFD Analysis
In the Middle East, gas-fired heaters are conventionally favored due to their reliability, cost-effectiveness, and minimal environmental impact. However, the challenges associated with traditional designs, such as low th...