Load Testing and Damage Analysis of Reinforced Pre-stressed Concrete Continuous Box Girder Bridge
Journal Title: Journal of Civil and Hydraulic Engineering - Year 2025, Vol 3, Issue 1
Abstract
Pre-stressed concrete continuous box girder bridges are widely used in bridge engineering due to their excellent mechanical properties. However, as the service life of the bridge increases and heavy vehicles exert additional loads, cracks may develop in the structure, leading to pre-stress loss and affecting its safety. This paper focuses on the reinforcement of an actual bridge and determines the pre-reinforcement stress state and stiffness degradation through load testing. The test results are combined with numerical simulations to analyze the stiffness of the box girder section. When the section stiffness is reduced by 5%, the deflection at the mid-span control section of the box girder is 11.7 mm, which is in good agreement with the actual condition. By integrating the bridge's appearance inspection results with numerical simulations, pre-stress loss in the box girder is analyzed. When the pre-stress loss reaches 10%, transverse cracks appear at the bottom of the main girder, similar to the results of field inspections. Based on this, the analysis considers a 5% stiffness reduction and a 10% pre-stress loss to evaluate the box girder.
Authors and Affiliations
Gen Wang
An Intelligent Recording Method for Field Geological Survey Data in Hydraulic Engineering Based on Speech Recognition
Field data collection is a crucial component of geological surveys in hydraulic engineering. Traditional methods, such as manual handwriting and data entry, are cumbersome and inefficient, failing to meet the demands of...
Regression Model for the Mechanical Properties of PVC-P Geomembranes with Scratch Damage
In response to the mechanical performance alterations of PVC-P geomembranes due to improper handling or subgrade particle action during construction and operation, a series of axial tensile tests on PVC-P geomembranes wi...
Real-Time Monitoring and Platform Design for Concrete Compactness Using Long Short-Term Memory Networks
To address the complexities and inaccuracies associated with traditional methods of concrete compactness monitoring, in this paper, a real-time monitoring approach based on long short-term memory (LSTM) networks has been...
Investigating the Properties and Determinants of Underwater Anti-Dispersive Cementitious Soil with Kaolin: An Experimental Approach
Pile foundations, as one of the main foundation forms for bridges and offshore wind power structures, are prone to scour pits around them under the long-term action of water flow, leading to a decrease in bearing capacit...
Bibliometric and Scientometric Trends in Structural Health Monitoring Using Fiber-Optic Sensors: A Comprehensive Review
The construction, maintenance, and repair of civil infrastructure demand substantial economic investment, underscoring the necessity of structural health monitoring (SHM) to mitigate property loss resulting from structur...