Measuring Temperatures Generated by Air Plasma Technology
Journal Title: Power Engineering and Engineering Thermophysics - Year 2022, Vol 1, Issue 1
Abstract
The atmospheric pressure air plasma technology is based on the general principle of transforming the air into an ideal conductor of plasma energy thanks to the application of an electric potential difference able to ionize the molecules. Applying the principle to the human surgery, it comes to be possible to assure an energy transfer from plasma-generator devices to the human tissue in a relatively simple way: passing through the air, with exceptionally limited effects in terms of tissue heating. Such a condition is very useful to assure effective treatments in surgery: less thermal damage, fewer side effects on the patient. This is also what emerged during the use of innovative devices embedding the Airplasma® technology (by Otech Industry S.r.l.), where temperatures on human tissues were measured stably below 50°C. However, the profiles assumed by the temperature along the different electrodes during the operating conditions are rather unclear. This knowledge is essential to improve the efficiency of the electrodes (through their redesign in shapes and materials) as well as to reduce the invasiveness of surgical interventions. The present work had the purpose of characterizing the most common electrodes thanks to temperature measurements carried out by infrared sensors respect to different operating conditions. A simplified finite element model was also developed to support the optimal redesign of electrodes.
Authors and Affiliations
Cristiano Fragassa, Marco Arru, Filippo Capelli, Ana Pavlovic, Matteo Gherardi
Energy and Exergy Evaluation of a Dual Fuel Combined Cycle Power Plant: An Optimization Case Study of the Khoy Plant
This study examines the energy and exergy performance of the Khoy dual fuel combined cycle power plant, focusing on dual pressure heat recovery steam generators (HRSGs). The aim is to identify an optimal design through t...
Review of Compression Ignition Engine Powered by Biogas and Hydrogen
Unsustainable fossil fuels are mainly used to generate power in compression ignition (CI) engines in industry now. Due to fossil fuel depletion and potential environmental hazards, it is necessary for researchers to find...
Influence of Radially Varying Magnetic Fields and Heat Sources/Sinks on MHD Free-Convection Flow Within a Vertical Concentric Annulus
In this study, an exact solution is developed to elucidate the effects of radially varying temperature-dependent heat sources/sinks (RVTDHS) and magnetic fields on natural convection flow between two vertically oriented...
Influence of Cooling and Lubrication Parameters on Robot Bone Grinding Temperature and Prediction Modeling
In the process of robot bone grinding, a large amount of heat is generated, which will cause mechanical and thermal damage to bone tissues and nerves. It is necessary to study the influence of cooling and lubrication par...
Influence of Nanoparticle Concentrations on Heat Transfer in Nano-Enhanced Phase Change Materials
This investigation examines the effects of varied nanoparticle concentrations, such as zinc oxide (ZnO), copper oxide (CuO), and aluminum oxide (Al2O3), on the mass fraction and melting characteristics within nano-enhanc...