METHOD OF AUTOMATIC CORRECTION OF NEUTRON MONITOR DATA FOR PRECIPITATION IN THE FORM OF SNOW IN REAL TIME

Journal Title: Solar-Terrestrial Physics - Year 2021, Vol 7, Issue 3

Abstract

We have carried out an experimental study of the influence of precipitation in the form of snow on measurements of the neutron flux intensity near Earth's surface. We have examined the state of the snow cover and its density, and found out that the density depends on the depth of the snow cover. Using the experimental results, we estimate the neutron absorption path in the snow. Changes in snow cover by 10–12 cm at a depth of 80 cm are shown to cause variations in the monitor count rate with an amplitude of 0.9 %. At the snow depth of 80 cm, the neutron monitor count rate decreases by about 8 %. The observed variations should be attributed to the meteorological effects of cosmic rays. The absorption coefficient of neutrons in the snow was also found from the correlation between the count rate of the neutron monitor and the amount of snow above the detector. We propose a real-time correction of the neutron monitor data for precipitation in the form of snow. For this purpose, we implement continuous monitoring of the amount of snow cover. The monitoring is provided by a snow meter made using a laser rangefinder module. We discuss the results obtained.

Authors and Affiliations

Yanchukovsky V. L. , Kuz’menko V. S.

Keywords

Related Articles

SOLAR ACTIVITY RESEARCH AT THE BAIKAL ASTROPHYSICAL OBSERVATORY OF ISTP SB RAS

The article presents the main results of solar studies carried out at the Baikal Astrophysical Observatory (BAO) of the Institute of Solar-Terrestrial Physics SB RAS (ISTP SB RAS) for 40 years. It outlines the history of...

INVESTIGATING SEASONAL FEATURES OF ELECTRON TEMPERATURE ENHANCEMENT REGIONS IN THE SUBAURORAL IONOSPHERE

The electron temperature enhancement is known to occur in the main ionospheric trough during geomagnetic disturbances. In this paper, we study fea-tures of the formation of the electron temperature (Te) enhancement in th...

IONOSPHERIC EFFECTS OF TWO SOLAR FLARES IN THE MAXIMUM OF SOLAR CYCLE 23 AND IN THE MINIMUM OF SOLAR CYCLE 24

Using data from the GPS and GLONASS navigation satellite systems, we analyze the responses of the mid-latitude ionosphere to the extreme solar flares that occurred at the maximum of solar cycle 23 (October 28, 2003) and...

VARIATIONS OF IONOSPHERIC PARAMETERS OVER ALMATY (KAZAKHSTAN) IN 1999–2013

The paper presents the results of a study of the behavior of ionospheric parameters of the total electron content, I(t), and electron density in the maximum F2 layer, Nm, over Almaty (Kazakhstan) [43.25° N; 76.92° E] in...

METHOD OF STUDYING INFRASOUND WAVES FROM THUNDERSTORMS

The paper provides an overview of studies of infrasound signals from thunderstorms over a period of more than 30 years. We deal with several types of infrasound signals from thunderstorms detected at the ISTP SB RAS infr...

Download PDF file
  • EP ID EP697564
  • DOI 10.12737/stp-73202108
  • Views 95
  • Downloads 0

How To Cite

Yanchukovsky V. L. , Kuz’menko V. S. (2021). METHOD OF AUTOMATIC CORRECTION OF NEUTRON MONITOR DATA FOR PRECIPITATION IN THE FORM OF SNOW IN REAL TIME. Solar-Terrestrial Physics, 7(3), -. https://europub.co.uk/articles/-A-697564