Microwave diagnostics of flare plasma by the direct fitting method based on data from the Siberian Radioheliograph

Journal Title: Solar-Terrestrial Physics - Year 2024, Vol 10, Issue 3

Abstract

In this paper, we analyze images and the frequency spectrum of microwave emission in the maximum of brightness distribution in the January 20, 2022 and July 16, 2023 flares recorded by the Siberian Radioheliograph in the 3–6 GHz and 6–12 GHz ranges. We use the obtained spectrum data for radio diagnostics of magnetic field strength and orientation, plasma density, and parameters of accelerated particles in a radio source. The radio diagnostics is carried out by a method based on minimizing the functional containing the intensities of theoretically calculated and observed frequency spectra of left-polarized and right-polarized emission. Since the form of such a multidimensional functional is quite complex, and it is not possible to minimize it by standard approaches, we employ a genetic minimization method. The radio diagnostics allows us to determine features of the dynamics of the magnetic field intensity and orientation, as well as the density and the energy spectral index of non-thermal electrons in the region of maximum brightness of the radio source. We have found that during the growth phase of the main radiation peaks the magnetic field decreases, whereas during the decay phase, on the contrary, it increases. The rate of these changes varies from a few G/s to 11 G/s for the January 20, 2022 flare and is about 1 G/s for the July 16, 2023 flare.

Authors and Affiliations

Smirnov D. A. , Melnikov V. F.

Keywords

Related Articles

ISTP SB RAS DECAMETER RADARS

Under the project National Heliogeophysical Complex of the Russian Academy of Sciences, it is planned to create several coherent decameter radars. ISTP SB RAS developed a network of coherent decameter radars well before...

IONOSPHERIC DISTURBANCES OVER EASTERN SIBERIA DURING APRIL 12–15, 2016 GEOMAGNETIC STORMS

We present the results of the complex study of ionospheric parameter variations during two geomagnetic storms, which occurred on April 12–15, 2016. The study is based on data from a set of radiophysical and optical instr...

INFLUENCE OF THE VONGFONG 2014 HURRICANE ON THE IONOSPHERE AND GEOMAGNETIC FIELD AS DETECTED BY SWARM SATELLITES: 2. GEOMAGNETIC DISTURBANCES

Strong meteorological disturbances in the atmosphere, accompanied by the generation of waves and turbulence, can affect ionospheric plasma and geomagnetic field. To search for these effects, we have analyzed electromagne...

DETERMINATION OF ELF WAVE CHARACTERISTICS MOST STRONGLY REACTING TO MINOR CHANGES OF IONOSPHERIC ELECTRON DENSITY IN A HIGH-LATITUDE REGION

In this paper, we use numerical experiment methods to address the problem of determining characteristics of ELF (0.3–3 kHz) electromagnetic waves recorded in the surface layer and providing the maximum amount of informat...

MID-LATITUDE AURORA IN SOLAR CYCLES 23–24 FROM OBSERVATIONS IN THE SOUTH OF EASTERN SIBERIA

The paper presents observations of mid-latitude aurora (MA) in the south of Eastern Siberia in solar cycles 23–24. Spectral composition and dominant emissions of MA, daily distribution of MA detection probability, depend...

Download PDF file
  • EP ID EP753787
  • DOI 10.12737/stp-103202404
  • Views 25
  • Downloads 0

How To Cite

Smirnov D. A. , Melnikov V. F. (2024). Microwave diagnostics of flare plasma by the direct fitting method based on data from the Siberian Radioheliograph. Solar-Terrestrial Physics, 10(3), -. https://europub.co.uk/articles/-A-753787