Mitigating Non-Technical Losses and Electricity Theft Through Smart Meters: A Case Study of the Akre District Power Distribution Network
Journal Title: Journal of Intelligent Systems and Control - Year 2024, Vol 3, Issue 3
Abstract
Electricity remains one of the most vital resources for industrial, domestic, and agricultural applications. However, electricity theft has emerged as a significant challenge, contributing to substantial power losses and severe economic repercussions for utility companies. This study examines the role of smart meters (SMs) in minimizing electricity theft and reducing energy losses by transitioning from traditional analogue meters to advanced SMs equipped with automated billing and metering systems. Data collected from the SM system in the Akre energy distribution network reveal that, following the implementation of SMs, overall electrical power losses were reduced by 17.1%, while theft incidents decreased by 96.4%. These results demonstrate that the deployment of SMs significantly contributes to lowering total power losses and yields considerable financial benefits for both utility providers (UPs) and consumers. Moreover, the system enhances the ability to remotely monitor and control customer meters, allowing continuous oversight of meter readings without requiring physical visits. This remote functionality strengthens theft prevention measures, improves grid reliability, and reduces operational costs. The findings highlight the potential of the SM system in advancing power efficiency and promoting a more secure and cost-effective energy distribution network.
Authors and Affiliations
Nizar Jabar Faqishafyee, Emad Hussen Sadiq, Harwan M. Taha
System Identification and Control of Automatic Car Pedal Pressing System
This paper mainly explores the system identification and control of an automatic car pedal pressing system. Specifically, the system identification was achieved using an artificial neural network, with the help of MATLAB...
Evaluation of the Accuracy and Consistency of Variable Reluctance Sensors for Turbine Speed Monitoring in Steam Turbine Generator 1.0 at Tambak Lorok CCPP
Accurate monitoring of turbine speed is essential for ensuring operational stability and efficiency in power generation systems, particularly within the context of low-carbon and renewable energy integration. This study...
Nonlinear Model Predictive Control for Longitudinal Tracking of Maglev Cars
In the era of low-carbon travel, maglev cars emerge as a high-speed, environmentally sustainable solution, leveraging their frictionless, smooth operation. This study introduces a nonlinear dynamic model for the longitud...
Adaptive Environmental Control System for Large-Scale Poultry Houses Based on Multif-LSTM
The environmental conditions in large-scale, intensive poultry farming systems require high precision, and accurate prediction of environmental factors is critical for effective control. Existing control methods generall...
Design and Implementation of FPGA for Digital Channelization Processing
To address the rate mismatch between high-bandwidth, high-sampling-rate analog-to-digital converters (ADCs) and low-bandwidth, low-sampling-rate baseband processors, digital signal processing techniques were employed to...