مقایسه شبکه‌های عصبی نوع GMDHچند هدفی و شبکه خودباوری بیزین در پیش‌بینی کدورت آب تصفیه شده مطالعه موردی: تصفیه خانه بزرگ آب گیلان

Journal Title: آب و فاضلاب - Year 2016, Vol 27, Issue 2

Abstract

Comparison of Multi Objective GMDH-type Neural Network and Bayesian Belief Network in the Prediction of Treated Water Turbidity Case Study: Great Water Treatment Plant in Guilan Province Abstract In this paper, the factors affecting water turbidity removal are identified using the Response Surface Methodology (RSM). The GMDH-type Neural Networks and Bayesian Belief Network (BBN) are subsequently employed for modeling and predicting treated water turbidity using an input-output data set. To validate the proposed model, a case study is carried out based on 700 sets of data obtained from Guilan ¬WTP. For modeling, the experimental data obtained from the operation unit are divided into train and test sections (70% for training and 30% for testing). The predicted values are then compared with experimental ones. The determination coefficients of the predicted values for the two BBN algorithms, consisting of EM and GD, and the GMDH model are found to be 0.9388, 0.9196, and 0.97095, respectively. Evidently, the GMDH model outperforms the BBN model in predicting treated water turbidity.

Authors and Affiliations

Allahyar Daghbandan, Fereshteh Alitaleshi, Mehran Yaghoobi

Keywords

Related Articles

تأثير شکل کانال در تخليه سطحي جريان چگال از دو مقطع مستطيلي و ذوزنقه‌اي در محيط‌هاي ساکن و همگن

The Impact of Channel Shape at Surface Discharge from Rectangular and Trapezoid Sections into Stagnant and Non-stratified Water Bodies In recent years, with growing population and industrialization of the world, desalina...

استفاده از گونه‌هاي درختي رطوبت‌پسند در جذب زيستي کادميم در محيط‌هاي آلوده Using Hydrophilic Tree Species for the Biological Removal of Cadmium in Contaminated Environments

Using Hydrophilic Tree Species for the Biological Removal of Cadmium in Contaminated Environments M. Jokar1, T. Rostami Shahraji2, M. Mohammadi3, A. Goleij1 1. PhD Student, Faculty of Natural Resources, University of G...

بررسي الگوي مصرف آب خانگي با رويکرد بخش‌بندي مصرف‌کنندگان (مطالعه موردي: مصرف‌کنندگان آب خانگي شهرستان ايلام)

Investigating the Consumption Pattern of Domestic Water by Segmentation Approach for Water Consumers (Case Study: Domestic Water Consumers in Ilam City) The aim of this study is to identify domestic water consumption am...

ارائه مدلي براي ارزيابي کيفيت عملکردي تصفيه‌خانه‌هاي آب A Model for Quantitative Performance Evaluation of Water Treatment Plants

Abstract Nowadays at the same time with population growth in urban areas, healthy potable water supply has become a challenge especially in arid and semi-aris countries who intend to fulfil a sustainable development. D...

اصلاح جاذب ميان- حفره سيليکاته MCM-48 وکاربرد آن در حذف يون‌هاي فلزي سرب وکادميم

Modification of MCM-48 Mesoporous Silica for the Removal of Lead and Cadmium Metal Ions from Aqueous Solutions Mesoporous silica adsorbents have been gaining increasing importance in the removal of heavy metal ions from...

Download PDF file
  • EP ID EP179988
  • DOI -
  • Views 97
  • Downloads 0

How To Cite

Allahyar Daghbandan, Fereshteh Alitaleshi, Mehran Yaghoobi (2016). مقایسه شبکه‌های عصبی نوع GMDHچند هدفی و شبکه خودباوری بیزین در پیش‌بینی کدورت آب تصفیه شده مطالعه موردی: تصفیه خانه بزرگ آب گیلان. آب و فاضلاب, 27(2), 71-83. https://europub.co.uk/articles/-A-179988