Моделювання розчинності металів X (Cr, Mn, Co, Ni, Cu) у фериті

Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 2

Abstract

MODELING OF SOLUBILITY OF METALS X (Cr, Mn, Co, Ni, Cu) IN FERRITE Filonenko N.Lu., Baskevich A.S. Abstract In this paper, the structural characteristics of the ferrite, the possible positions of the atoms of the alloying elements and the carbon in the ferrite grid were investigated and determined. It is established that the insignificant solubility of carbon in the ferrite is due to the fact that the penetration of the carbon atom into the lattice causes a significant deformation of the lattice, which leads to the fact that much of the pores are not filled with carbon atoms. Because of this, the atoms of other elements can penetrate the pores. Using the quasi-chemical method has allowed to determine the limit of solubility in ferrites of such metal atoms as chromium, manganese, cobalt, nickel and copper, depending on temperature. The results of the solution of the system of thermodynamic equations have shown that at temperature T = 300 К ferrite has the following content of elements: Mn = 4.8% (at), Co = 8.95%, Cr = 0.34% (at.), Cu = 0.4% (at.) And Ni = 7.48% (at.). With an increase in temperature to 900 K, the content of the elements increases to Mn = 10.1% (at), Co = 7.95% (at), Cr = 12.3% (at.), Cu = 1.54% (at .) and Ni = 3.17% (at.). The analysis of the results allowed to determine the solubility of manganese, cobalt, chromium, copper and nickel in ferrite. In addition, it was found that up to 0.11% (atoms) of carbon atoms can penetrate the ferrite grating, depending on the temperature in both the octahedral and tetrahedral times, by ferrating with metal atoms X (Cr, Mn, Co, Ni, Cu ) Also, with the help of the quasi-chemical method, the free energy of the ferrite is obtained, depending on the content of the alloying elements, namely, metal atoms X (Cr, Mn, Co, Ni, Cu). The solubility limit of these elements in the ferrite is determined. With increasing temperatures, the solubility of carbon in these phases increases. This method allows one to predict the physical properties of the ferrite and the lossy phases that can be formed depending on the content of the alloying elements in the steel or alloy. The calculated data obtained in the work are in good agreement with the experimental data. References [1] Livshitz B.G., Kraposhyn V.S., Linetzkyi Ja, L. “Phizicheskiie svoistva mettalov i splavov” [ Physical properties of metalls and alloys]. Moskov, Metallurgia.1980, 320p. [2] Shumilov M.A. “Vlijaniie elektronnogo stroienija legirujuschych elementov na ikh sposobnost’ uprochnenija pherrita” [Effect of the electronic structure of alloying elements on their ability to harden ferrite]. Visnyk pryazovs’kogo technichnogo universitetu, 2001, Vyp.11, pp.1–3. (in Ukrainian). [3] Goldshtein I.I., Grachev S.V., Veksler Ju.G. „ Spetzialnyie stali” [The special steel]. Moskov, Metallurgy, 1985, 408 p. [4] Kasilov A.N., Kasilov O.A. “Zavisimost’ phisicheskikh strukturno–chuvstvitel’nykh svoistv i tverdosti legirovannykh stalei ot sostava i rezhyma termicheskoi obrabotki” [Dependence physical structurally sensible properties and hardness of alloyed steels from compositions and mode of heat treatment]. Naukovyi visnyk Khersonskoii derzhavnoii morskoii akademii, 2013, №2(9). pp. 171–182. (in Ukrainian). [5] Bannykh O.A., Blinov V.M., Shal’kevich A.B. i dr. “ Vlijaniie termicheskoi obrabotki na strukturu I mekhanicheskiie svoistva ocobo vysokoprochnoi rjhhjzionnostoikoi mertensitno–austenitnoi stali” [Influence of heat treatment on a structure and mechanical properties especially high durability inoxidizability martensite–austenic steel] . Metally, 2005, №3, pp.4–22. (in Rassian). [6] Shaskolskaja M.P. “Kristallographija’ [Crystallography]. Moskva, Vysshaja shkola, 1984, 679 p. [7] Nechaiev Ju.S. “Raspredelenie uglepoda v staljakh” [Distribution of carbon is in steels]. Uspekhiy phizicheskikh nauk. 2011, t.181, №5, pp.483–490. (in Russian). [8] Guljaev A.P. “metallovedeniie”, [Physical metallurgy]. Moskva, Metallurgy, 1986, 541 p. [9] Matysina Z.A., Miljan M.I. “Teorija rastvorimosti v uporjadochennykh phazakh” [A theory of solubility is in well–organization phases], Dnepropetrovsk, DGU,1991, 85 p. [10] Young-Min Kim, Young-Han Shin, Byeong-Joo Lee. “Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system”, Acta Materialia, 2009, 57, pp.474–482 [11] Vincent E., Becquart C.S. “Domain Solute interaction with point defects in a Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach”, Journal of Nuclear Materials,2006, 351, pp.88–99. [12] Tersoff' J. “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Physical Review B., 1989, V.39, №8, pp.5566–5567. [13] Clouet Emmanuel, Garruchet Se´bastien, Nguyen Hoang, Perez Michel at all. “Dislocation interaction with C in a-Fe: A comparison between atomic simulations and elasticity theory”, Acta Materialia, 2008, 56, pp.3450–3460. [14] Luoma R. “A Thermodynamic Analysis of the System Fe-Cr-Ni-C-O”, Acta Polytechnica Scandinavica, Chemical Technology Series Helsinki, 2002, №292, pp. 91–98. [15] Lina and Selleby Kjellqvist, Malin and Sundman. “Thermodynamic modelling of the Cr–Fe–Ni–O system”, Calphad, 2008, Vol.32,№ 3, pp. 577–592. [16] Caro A., Caro M., Lopasso E. M. at all. “Thermodynamics of Fe-Cu alloys as described by a classic potentials”, Journal of Nuclear Materials, 2005, pp.1–28. [17] Tokunaga Tatsuya, Ohtani Hiroshi and Hasebe Mitsuhiro. “Thermodynamic Study of Phase Equilibria in the Ni–Fe–B System”, Materials Transactions, 2005, Vol.46, No.6,– pp. 1193–1198.

Authors and Affiliations

Н. Ю. Філоненко, О. С. Баскевич

Keywords

Related Articles

Розв’язок статичної плоскої задачі теорії пружності для неоднорідних ізотропних тіл

THE SOLUTION OF THE STATIC FLAT TASK OF ELASTICITY THEORY FOR HETEROGENEOUS ISOTROPIC SHAPES Kalinin E.I., Polyashenko S.O. Abstract It is known that operators that determine the constituent laws for visco-elastic mat...

Математическая модель срока службы роторных питателей транспортно-загрузочной системы

A mathematical model of working rotating conical surface tribosystem after wear. The parameters influencing the formation of the relief of the rotor wear. The mathematical models to determine the characteristics curves o...

Тheoretical foundations of expansion of the numerical space

ТЕОРЕТИЧНІ ОСНОВИ РОЗШИРЕННЯ ЧИСЛОВОГО ПРОСТОРУ Романюк О.Д., Романюк Р.О. Реферат Логічний аналіз історії розвитку теорії чисел і особливо векторної алгебри, наштовхував на ідею введення «тримірних» чисел, над якими...

Современные средства аппаратной и программной поддержки IEEE-стандарта

MODERN MEANS OF HARDWARE AND SOFTWARE SUPPORT FOR THE IEEE STANDARD Zhulkovska I.I., Zhulkovskii O.A. Abstract Rounding floating-point numbers is a very important problem of the existing computer arithmetic. Numbers are...

МЕТОДИКА ФІЗИЧНОГО МОДЕЛЮВАННЯ СПЛИВАННЯ АНСАМБЛЮ НЕМЕТАЛЕВИХ ВКЛЮЧЕНЬ У СТАЛЕРОЗЛИВНОМУ КОВШІ

METHOD OF PHYSICAL MODELING OF FLOATING OF THE NONMETALLIC INCLUSIONS GROUP IN A TEEMING LADLE Lantukh O.S., Molchanov L.S., Synehin E.V. Abstract The authors considered an important problem for steel quality, consisti...

Download PDF file
  • EP ID EP276908
  • DOI -
  • Views 85
  • Downloads 0

How To Cite

Н. Ю. Філоненко, О. С. Баскевич (2017). Моделювання розчинності металів X (Cr, Mn, Co, Ni, Cu) у фериті. Математичне моделювання, 1(2), 35-37. https://europub.co.uk/articles/-A-276908