Моделювання розчинності металів X (Cr, Mn, Co, Ni, Cu) у фериті
Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 2
Abstract
MODELING OF SOLUBILITY OF METALS X (Cr, Mn, Co, Ni, Cu) IN FERRITE Filonenko N.Lu., Baskevich A.S. Abstract In this paper, the structural characteristics of the ferrite, the possible positions of the atoms of the alloying elements and the carbon in the ferrite grid were investigated and determined. It is established that the insignificant solubility of carbon in the ferrite is due to the fact that the penetration of the carbon atom into the lattice causes a significant deformation of the lattice, which leads to the fact that much of the pores are not filled with carbon atoms. Because of this, the atoms of other elements can penetrate the pores. Using the quasi-chemical method has allowed to determine the limit of solubility in ferrites of such metal atoms as chromium, manganese, cobalt, nickel and copper, depending on temperature. The results of the solution of the system of thermodynamic equations have shown that at temperature T = 300 К ferrite has the following content of elements: Mn = 4.8% (at), Co = 8.95%, Cr = 0.34% (at.), Cu = 0.4% (at.) And Ni = 7.48% (at.). With an increase in temperature to 900 K, the content of the elements increases to Mn = 10.1% (at), Co = 7.95% (at), Cr = 12.3% (at.), Cu = 1.54% (at .) and Ni = 3.17% (at.). The analysis of the results allowed to determine the solubility of manganese, cobalt, chromium, copper and nickel in ferrite. In addition, it was found that up to 0.11% (atoms) of carbon atoms can penetrate the ferrite grating, depending on the temperature in both the octahedral and tetrahedral times, by ferrating with metal atoms X (Cr, Mn, Co, Ni, Cu ) Also, with the help of the quasi-chemical method, the free energy of the ferrite is obtained, depending on the content of the alloying elements, namely, metal atoms X (Cr, Mn, Co, Ni, Cu). The solubility limit of these elements in the ferrite is determined. With increasing temperatures, the solubility of carbon in these phases increases. This method allows one to predict the physical properties of the ferrite and the lossy phases that can be formed depending on the content of the alloying elements in the steel or alloy. The calculated data obtained in the work are in good agreement with the experimental data. References [1] Livshitz B.G., Kraposhyn V.S., Linetzkyi Ja, L. “Phizicheskiie svoistva mettalov i splavov” [ Physical properties of metalls and alloys]. Moskov, Metallurgia.1980, 320p. [2] Shumilov M.A. “Vlijaniie elektronnogo stroienija legirujuschych elementov na ikh sposobnost’ uprochnenija pherrita” [Effect of the electronic structure of alloying elements on their ability to harden ferrite]. Visnyk pryazovs’kogo technichnogo universitetu, 2001, Vyp.11, pp.1–3. (in Ukrainian). [3] Goldshtein I.I., Grachev S.V., Veksler Ju.G. „ Spetzialnyie stali” [The special steel]. Moskov, Metallurgy, 1985, 408 p. [4] Kasilov A.N., Kasilov O.A. “Zavisimost’ phisicheskikh strukturno–chuvstvitel’nykh svoistv i tverdosti legirovannykh stalei ot sostava i rezhyma termicheskoi obrabotki” [Dependence physical structurally sensible properties and hardness of alloyed steels from compositions and mode of heat treatment]. Naukovyi visnyk Khersonskoii derzhavnoii morskoii akademii, 2013, №2(9). pp. 171–182. (in Ukrainian). [5] Bannykh O.A., Blinov V.M., Shal’kevich A.B. i dr. “ Vlijaniie termicheskoi obrabotki na strukturu I mekhanicheskiie svoistva ocobo vysokoprochnoi rjhhjzionnostoikoi mertensitno–austenitnoi stali” [Influence of heat treatment on a structure and mechanical properties especially high durability inoxidizability martensite–austenic steel] . Metally, 2005, №3, pp.4–22. (in Rassian). [6] Shaskolskaja M.P. “Kristallographija’ [Crystallography]. Moskva, Vysshaja shkola, 1984, 679 p. [7] Nechaiev Ju.S. “Raspredelenie uglepoda v staljakh” [Distribution of carbon is in steels]. Uspekhiy phizicheskikh nauk. 2011, t.181, №5, pp.483–490. (in Russian). [8] Guljaev A.P. “metallovedeniie”, [Physical metallurgy]. Moskva, Metallurgy, 1986, 541 p. [9] Matysina Z.A., Miljan M.I. “Teorija rastvorimosti v uporjadochennykh phazakh” [A theory of solubility is in well–organization phases], Dnepropetrovsk, DGU,1991, 85 p. [10] Young-Min Kim, Young-Han Shin, Byeong-Joo Lee. “Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system”, Acta Materialia, 2009, 57, pp.474–482 [11] Vincent E., Becquart C.S. “Domain Solute interaction with point defects in a Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach”, Journal of Nuclear Materials,2006, 351, pp.88–99. [12] Tersoff' J. “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Physical Review B., 1989, V.39, №8, pp.5566–5567. [13] Clouet Emmanuel, Garruchet Se´bastien, Nguyen Hoang, Perez Michel at all. “Dislocation interaction with C in a-Fe: A comparison between atomic simulations and elasticity theory”, Acta Materialia, 2008, 56, pp.3450–3460. [14] Luoma R. “A Thermodynamic Analysis of the System Fe-Cr-Ni-C-O”, Acta Polytechnica Scandinavica, Chemical Technology Series Helsinki, 2002, №292, pp. 91–98. [15] Lina and Selleby Kjellqvist, Malin and Sundman. “Thermodynamic modelling of the Cr–Fe–Ni–O system”, Calphad, 2008, Vol.32,№ 3, pp. 577–592. [16] Caro A., Caro M., Lopasso E. M. at all. “Thermodynamics of Fe-Cu alloys as described by a classic potentials”, Journal of Nuclear Materials, 2005, pp.1–28. [17] Tokunaga Tatsuya, Ohtani Hiroshi and Hasebe Mitsuhiro. “Thermodynamic Study of Phase Equilibria in the Ni–Fe–B System”, Materials Transactions, 2005, Vol.46, No.6,– pp. 1193–1198.
Authors and Affiliations
Н. Ю. Філоненко, О. С. Баскевич
Дослідження впливу частоти струму на опір індукційного реостату за допомогою розв’язку рівнянь поля в тривимірній постановці
INVESTIGATION OF THE INFLUENCE OF THE CURRENT FREQUENCY ON THE RESISTANCE OF THE INDUCTION RHEOSTAT BY MEANS OF THE SOLUTION OF FIELD EQUATIONS IN THE 3D FORMULATION. Syanov O.M., Kosuhina O.S., Polyakov R.M. Abstract...
Адаптация формулы Планка для реальных тел на базе экспериментальных исследований
The methodology of experimental data processing, that allows to adapt the Plank radiation formula for creating the equation of heat radiation for the real solids using the correlation function, is described in this artic...
Моделювання впливу похибок форми опорних поверхонь гідростатичного підшипника на статистичні характеристики траєкторій шпинделя
In this paper were researched laws formation of the statistical characteristics of the trajectories movement of the spindle mounted on hydrostatic bearings depending on the form errors, temperature deformations support s...
Аналитическое исследование нагрева твердых тел радиацией. Сообщение2
On the basis of the solution of the integral equation, connecting a heat flux and surface temperature in a quasista-tionary heating stage, rather simple analytical formulas by calculation of temperatures and thermal tens...
МОДЕЛЬ ПОБУДОВИ АДЕКВАТНОГО МАТЕМАТИЧНОГО ОПИСУ ПРОЦЕСУ ПЕРЕТВОРЮВАННЯ СИГНАЛУ В ЕЛЕКТРОННІЙ СИСТЕМІ
MODEL FOR CONSTRUCTING AN ADEQUATE MATHEMATICAL DESCRIPTION OF THE SIGNAL CON-VERSION PROCESS IN AN ELECTRONIC SYSTEM Meshaninov S.K. Abstract Safety and reliability of signal conversion in the electronic system is the...