MONOTONICITY AND CONVEXITY PROPERTIES OF THE NIELSEN’S β-FUNCTION
Journal Title: Проблемы анализа-Issues of Analysis - Year 2017, Vol 6, Issue 2
Abstract
The Nielsen’s β-function provides a powerful tool for evaluating and estimating certain integrals, series and mathematical constants. It is related to other special functions such as the digamma function, the Euler’s beta function and the Gauss’ hypergeometric function. In this work, we prove some monotonicity and convexity properties of the function by employing largely the convolution theorem for Laplace transforms.
Authors and Affiliations
Kwara Nantomah
ON THE ALMOST PERIODIC AT INFINITY FUNCTIONS FROM HOMOGENEOUS SPACES
We consider homogeneous spaces of functions defined on the real axis (or semi-axis) with values in a complex Banach space. We study the new class of almost periodic at infinity functions from homogeneous spaces. The main...
THE DAMASCUS INEQUALITY
In 2016 Prof. Fozi M. Dannan from Damascus, Syria, proposed an interesting inequality for three positive numbers with unit product. It became widely known but was not proved yet in spite of elementary formulation. In thi...
Volume and area of intersection of a ball and an infinite parallelepiped
В статье рассматривается тело, являющиеся пересечением шара и прямого произведения квадрата на прямую (бесконечный параллелепипед), причем диаметр шара лежит на оси симметрии параллелепипеда. Вычисляются объем и площадь...
ТЕОРЕМЫ О РАЗРЕШИМОСТИ НЕЛИНЕЙНЫХ ОПЕРАТОРНЫХ УРАВНЕНИЙ В БАНАХОВЫХ АЛГЕБРАХ С КОНУСОМ
Solvability theorems for nonlinear operator equations in Banach spaces with a cone has given in this paper.
Value range of solutions to the chordal Loewner equation with restriction on the driving function
We consider a value range {g(i,T)} of solutions to the chordal Loewner equation with the restriction |λ(t)| <= c on the driving function. We use reachable set methods and the Pontryagin maximum principle.