Comparison Of Some Statistical Techniques In Evaluating Sesame Yield And Its Contributing Factors

Journal Title: Scientia Agriculturae - Year 2013, Vol 1, Issue 1

Abstract

 Two field experiments were carried out in a commercial field at Abo Rawash village, Giza governorate, Egypt during 2004 and 2005 seasons to compare five statistical procedures including: simple correlation, path analysis, multiple linear regression, stepwise regression and factor analysis were in determining the relationship between sesame seed yield and its contributing traits. Thirty sesame genotypes were used for this purpose. The studied characters were: flowering date, plant height, stem height to the first capsule, fruiting zone length, number of capsules on main stem, number of capsules per plant, capsule density on main stem, 1000-seed weight and seed yield per plant. The most important results can be summarized as follows: 1. The simple correlation coefficients and path analysis of yield components revealed that components with the highest positive correlation to yield also had the highest positive direct effect to yield i.e., number of capsules on main stem and number of capsules per plant. Path analysis showed that, the residual effect (0.433) was high in magnitude which shows that some other important yield contributing characters which contribute to yield have to be included. 2. Stepwise multiple regression analysis showed that 77.25% of the total variation in seed yield could be explained by the variation in number of capsules per plant and flowering date in sesame. The linear regression equation was (Y) = 10.951 - 0.110 X1 + 0.114 X7, where Y, X1and X7 represent seed yield per plant, flowering date and number of capsules per plant, respectively. 3. Besides, coefficient of determination (R2), adjusted R-squared statistic and standard error of estimate values, mean absolute error (MAE) and Durbin-Watson (DW) statistic test showed no significant differences between the full model regression and stepwise multiple regression analysis technique. However, the efficiency expressed is due to the reduction in number of variables in the fitted model from all variables (full model regression) to two variables only (stepwise multiple regression). 4. Factor analysis indicated that three factors could explain approximately 81.9% of the total variation. Factor analysis indicated that three factors could explain approximately 81.9% of the total variation. The first factor which accounted for about 41% of the variation was strongly associated with fruiting zone length, number of capsules on main stem, number of capsules per plant, and capsule density. The second factor which accounts for about 25% of the variation, was strongly associated and positive effects on days to flowering, 1000-seed weight, plant height and stem height to the first capsule, whereas the third factor had positive effects on number of fruiting branches only, which accounts for about 16% of the variation. Factor analysis technique was more efficient than other used statistical techniques. It provides more information about cluster of inter-correlated variables. 5. Based on the five of statistical analysis techniques, agreed upon that high yield of sesame plants could be obtained by selecting breeding materials with high number of capsules on main stem, number of capsules per plant, plant height and increasing capsule density on the main stem.

Authors and Affiliations

Ashraf A Abd El- Mohsen

Keywords

Related Articles

 Effect Of Phosphorus Fertilization Rates And Split On Plant Uptake And Available Soil Residual Phosphorus In Calcareous Soil

 A field experiment was conducted at the college of Agriculture and Forestry in Mosul University to evaluate the effect of splitting of phosphorus fertilization on plant uptake and available soil residual phosphorus...

 Effects of tuberculosis on sugarcane farmers productivity in the lubombo region of swaziland

 The study examines the effects of tuberculosis on sugarcane’s farmers’ productivity in the Lubombo region of Swaziland. One hundred and forty sugarcane farmers were selected for the study, through stratified random...

 Effects of Recirculation and Ventilating Airs on Performance of Air-Conditioning Systems

 The effects of recirculation and ventilating airs cannot be over emphasized in air-conditioning(AC) systems. These two important factors in AC systems affect COP, required air change and power required to run the s...

 The Effect of Leaf Nutrition with Hortigrow on the Content, Yield and Chemical Composition of the Essential Oil from Common Basil of ‘Trakia’ Cultivar

 The aim of the study was to establish the effect of the leaf nutrition with Hortigrow on the content, yield and chemical composition of the essential oil distilled from dry leaf and stems biomass and flower spikes...

 Evaluation of some commercial bacterial biofertilizers and isolates against root knot nematode, Meloidogyne incognita infesting green bean, Phaseolus vulgaris

 Under field conditions, Four commercial biofertilizers namely, phosphorine (containing phosphate dissolving bacterium namely Bacillus megatherium or megaterium), Rhizobacterin (containing plant growth promotimg bac...

Download PDF file
  • EP ID EP162540
  • DOI -
  • Views 135
  • Downloads 0

How To Cite

Ashraf A Abd El- Mohsen (2013).  Comparison Of Some Statistical Techniques In Evaluating Sesame Yield And Its Contributing Factors. Scientia Agriculturae, 1(1), 8-14. https://europub.co.uk/articles/-A-162540