Comparison Of Some Statistical Techniques In Evaluating Sesame Yield And Its Contributing Factors

Journal Title: Scientia Agriculturae - Year 2013, Vol 1, Issue 1

Abstract

 Two field experiments were carried out in a commercial field at Abo Rawash village, Giza governorate, Egypt during 2004 and 2005 seasons to compare five statistical procedures including: simple correlation, path analysis, multiple linear regression, stepwise regression and factor analysis were in determining the relationship between sesame seed yield and its contributing traits. Thirty sesame genotypes were used for this purpose. The studied characters were: flowering date, plant height, stem height to the first capsule, fruiting zone length, number of capsules on main stem, number of capsules per plant, capsule density on main stem, 1000-seed weight and seed yield per plant. The most important results can be summarized as follows: 1. The simple correlation coefficients and path analysis of yield components revealed that components with the highest positive correlation to yield also had the highest positive direct effect to yield i.e., number of capsules on main stem and number of capsules per plant. Path analysis showed that, the residual effect (0.433) was high in magnitude which shows that some other important yield contributing characters which contribute to yield have to be included. 2. Stepwise multiple regression analysis showed that 77.25% of the total variation in seed yield could be explained by the variation in number of capsules per plant and flowering date in sesame. The linear regression equation was (Y) = 10.951 - 0.110 X1 + 0.114 X7, where Y, X1and X7 represent seed yield per plant, flowering date and number of capsules per plant, respectively. 3. Besides, coefficient of determination (R2), adjusted R-squared statistic and standard error of estimate values, mean absolute error (MAE) and Durbin-Watson (DW) statistic test showed no significant differences between the full model regression and stepwise multiple regression analysis technique. However, the efficiency expressed is due to the reduction in number of variables in the fitted model from all variables (full model regression) to two variables only (stepwise multiple regression). 4. Factor analysis indicated that three factors could explain approximately 81.9% of the total variation. Factor analysis indicated that three factors could explain approximately 81.9% of the total variation. The first factor which accounted for about 41% of the variation was strongly associated with fruiting zone length, number of capsules on main stem, number of capsules per plant, and capsule density. The second factor which accounts for about 25% of the variation, was strongly associated and positive effects on days to flowering, 1000-seed weight, plant height and stem height to the first capsule, whereas the third factor had positive effects on number of fruiting branches only, which accounts for about 16% of the variation. Factor analysis technique was more efficient than other used statistical techniques. It provides more information about cluster of inter-correlated variables. 5. Based on the five of statistical analysis techniques, agreed upon that high yield of sesame plants could be obtained by selecting breeding materials with high number of capsules on main stem, number of capsules per plant, plant height and increasing capsule density on the main stem.

Authors and Affiliations

Ashraf A Abd El- Mohsen

Keywords

Related Articles

 Effects of Recirculation and Ventilating Airs on Performance of Air-Conditioning Systems

 The effects of recirculation and ventilating airs cannot be over emphasized in air-conditioning(AC) systems. These two important factors in AC systems affect COP, required air change and power required to run the s...

 Performance of Some Zinc Enriched Rice Genotypes in Different Agro-Ecological Conditions of Bangladesh

 In Bangladesh, many people especially the children and pregnant woman are used to suffer from malnutrition. The children become stunted growth which might be due to deficiency of micronutrients specially the zinc....

 Effect of N fertilization and plant density on yield and yield components of grain sorghum under climatic conditions of Sistan, Iran

 In order to study the effect of different levels of N fertilization and plant density on yield and yield components of grain sorghum cv. Sistan, an experiment was conducted in agricultural research farm of Zehak, I...

 Impact of a Biocide Abamectine for Controlling of Plant Parasitic Nematodes, Productivity and Fruit Quality of Some Date Palm Cultivars

 Date palm is considered one of the most important horticultural crops in different Arab countries and it plays a significant role in economy, society and environment of these areas. However, date production is suff...

 Chemical analysis and identification of the components of Black Seed and Thyme cultivated in Iran

 Black seed and thyme are scientific named Nigella sativa L. and Thymus vulgaris. belongs to Ranunculacea and Lamiaceae families, respectively. The Mediterranean region can be described as the center of the genus. T...

Download PDF file
  • EP ID EP162540
  • DOI -
  • Views 154
  • Downloads 0

How To Cite

Ashraf A Abd El- Mohsen (2013).  Comparison Of Some Statistical Techniques In Evaluating Sesame Yield And Its Contributing Factors. Scientia Agriculturae, 1(1), 8-14. https://europub.co.uk/articles/-A-162540