Effects of microstructure and crystallography on crack path and intrinsic resistance to shear-mode fatigue crack growth
Journal Title: Frattura ed Integrità Strutturale - Year 2015, Vol 9, Issue 34
Abstract
The paper focuses on the effective resistance and the near-threshold growth mechanisms in the ferritic-pearlitic and the pure pearlitic steel. The influence of microstructure on the shear-mode fatigue crack growth is divided here into two factors: the crystal lattice type and the presence of different phases. Experiments were done on ferritic-pearlitic steel and pearlitic steel using three different specimens, for which the effective mode II and mode III threshold values were measured and fracture surfaces were reconstructed in three dimensions using stereophotogrammetry in scanning electron microscope. The ferritic-pearlitic and pearlitic steels showed a much different behaviour of modes II and III cracks than that of the ARMCO iron. Both the deflection angle and the mode II threshold were much higher and comparable to the austenitic steel. Mechanism of shear-mode crack behaviour in the ARMCO iron, titanium and nickel were described by the model of emission of dislocations from the crack tip under a dominant mode II loading. In other tested materials the cracks propagated under a dominance of the local mode I. In the ferritic-pearlitic and pearlitic steels, the reason for such behaviour was the presence of the secondary-phase particles (cementite lamellas), unlike in the previously austenitic steel, where the fcc structure and the low stacking fault energy were the main factors. A criterion for mode I deflection from the mode II crack-tip loading, which uses values of the effective mode I and mode II thresholds, was in agreement with fractographical observations.
Authors and Affiliations
J. Pokluda, T. Vojtek, A. Hohenwarter, R. Pippan
Local approaches for the fracture assessment of notched components: the research work developed by Professor Paolo Lazzarin
Brittle failure of components weakened by cracks or sharp and blunt V-notches is a topic of active and continuous research. It is attractive for all researchers who face the problem of fracture of materials under&...
The failure criterion based on hydrogen distribution ahead of the fatigue crack tip
The hydrogen effect on the fracture toughness and fatigue crack growth behaviour in the martensitic high strength steel is investigated. The secondary ion mass spectrometry method has been employed to analyse...
Analysis of the influence of the anisotropy induced by cold rolling on duplex and super-austenitic stainless steels
This report contains the results obtained from the mechanical characterization tests carried out on two different stainless steel (duplex 6%Ni, 22%Cr and super-austenitic 31%Ni, 28%Cr) used for the manufacturing of pipes...
Fatigue crack growth of aluminium alloy 7075-T651 under non-proportional mixed mode I and II loads
This study aims to investigate fatigue growth behaviour in AA7075-T651 under non-proportional mixed mode I and II loads. Fatigue tests were performed under cyclic tension and torsion using a thin-walled tubular sp...
Incorporation of Mean/Maximum Stress Effects in the Multiaxial Racetrack Filter
This work extends the Multiaxial Racetrack Filter (MRF) to incorporate mean or maximum stress effects, adopting a filter amplitude that depends on the current stress level along the stress or strain path. In this...