Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines
Journal Title: Frattura ed Integrità Strutturale - Year 2015, Vol 9, Issue 33
Abstract
Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF) as a consequence of the synergic action of the surrounding harsh environment (the lubricant) supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF). This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.
Authors and Affiliations
J. Toribio, M. Lorenzo, D. Vergara
Static assessment of brittle/ductile notched materials: an engineering approach based on the Theory of Critical Distances
Engineering components often contain notches, keyways or other stress concentration features. These features raise the stress state in the vicinity of their apex which can lead to unexpected failure of the compone...
Cold spray technology: future of coating deposition processes
Cold spray (CS) belongs to a wide family of thermal spray technology with the difference that it is a solid state process in which spray particles are deposited via supersonic velocity impact at a temperature much...
Experimental study of heat dissipation at the crack tip during fatigue crack propagation
This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE and titanium al...
Deformation and fatigue behaviors of carburized automotive gear steel and predictions
The fatigue behavior of carburized components such as automotive transmission gears is very complex due to hardness and microstructure difference, residual stresses and multi-axial stress states developed bet...
Misure di tenacità a frattura su acciai utilizzando velocità di deformazione elevate
La conoscenza delle proprietà meccaniche di tipo dinamico per i materiali metallici è utile ogniqualvolta la sensibilità alla velocità di deformazione è di rilevanza per un acciaio, e qualora le condizioni reali di...