Novel Lansoprazole-Loaded Nanoparticles for the Treatment of Gastric Acid Secretion-Related Ulcers: In Vitro and In Vivo Pharmacokinetic Pharmacodynamic Evaluation
Journal Title: The AAPS Journal - Year 2014, Vol 16, Issue 3
Abstract
The objective of this study is to combine nanoparticle design and enteric coating technique to sustain the delivery of an acid-labile drug, lansoprazole (LPZ), in the treatment of acid reflux disorders. Lansoprazole-loaded Eudragit® RS100 nanoparticles (ERSNP-LPZ) as well as poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGANP-LPZ) were prepared using a solvent evaporation/extraction method. The effects of nanoparticle charge and permeation enhancers on lansoprazole uptake was assessed in Caco-2 cells. The confocal microscopic images revealed the successful localization of nanoparticles in the cytoplasm of Caco-2 cells. The cellular uptake of positively charged Eudragit nanoparticles was significantly higher than that of negatively charged PLGA nanoparticles, which were enhanced by sodium caprate via the transcellular pathway. Both types of nanoparticles exhibited sustained drug release behavior in vitro. The oral administration of enteric-coated capsules filled with nanoparticles sustained and prolonged the LPZ concentration up to 24 h in ulcer-induced Wistar rats, and 92.4% and 89.2% of gastric ulcers healed after a 7-day treatment with either EC-ERSNP1010-Na caprate or EC-PLGANP1005-Na caprate, respectively.
Authors and Affiliations
Milind Alai, Wen Jen Lin
Cellular uptake and concentrations of tamoxifen upon administration in poly(ε-caprolactone) nanoparticles
Purpose: In an attempt to increase the local concentration of tamoxifen in estrogen receptor positive breast cancer cells, we have prepared and characterized poly (ε-caprolactone) (PCL) nanoparticle formulation....
Role of Biotransformation Studies in Minimizing Metabolism-Related Liabilities in Drug Discovery
Metabolism-related liabilities continue to be a major cause of attrition for drug candidates in clinical development. Such problems may arise from the bioactivation of the parent compound to a reactive metabolite capable...
Comparative In Silico–In Vivo Evaluation of ASGP-R Ligands for Hepatic Targeting of Curcumin Gantrez Nanoparticles
The online version of this article (doi:10.1208/s12248-013-9474-6) contains supplementary material, which is available to authorized users.
Cytochrome P450s and other enzymes in drug metabolism and toxicity
The cytochrome P450 (P450) enzymes are the major catalysts involved in the metabolism of drugs. bioavailability and toxicity are 2 of the most common barriers in drug development today, and P450 and the conjugation enzym...
Vesicular monoamine transporter 2: Role as a novel target for drug development
In the central nervous, system, vesicular monoamine transporter 2 (VMAT2) is the only transporter that moves cytoplasmic dopamine (DA) into synaptic vesicles for storage and subsequent exocytotic release. Pharmacological...