Nowe termowrażliwe powierzchnie polimerowe do hodowli i uwalniania komórek skóry
Journal Title: Wiadomości Chemiczne - Year 2016, Vol 70, Issue 11
Abstract
ovalent attachment of a thermoresponsive polymer to solid support leads to layers exhibiting temperature-dependent properties. Below the cloud point temperature (TCP) of the thermoresponsive polymer the layer is hydrophilic – it is hydrated and polymer chains adopt an expanded conformation. Above TCP, the polymer chains collapse due to dehydration and the surface becomes hydrophobic. This is a reversible process, lowering the temperature cause hydration and swelling of the layer. Such thermoresponsive layers can be obtained via reactions of entities present on the surface (e.g. functional groups, radicals etc.) with complementary functionalities in the polymer chains (grafting to) or with monomer subjected to polymerization (grafting from). Thermoresponsive layers may be used in many biomedical applications such as separation of molecules or cell sheet engineering. In this work, well-defined thermoresponsive (co)polymers of glycidol and ethyl glycidyl carbamate (mPGl), 2-ethyl and 2-nonyl-2-oxazoline (PENOx) as well as homopolymers of 2-isopropyl-2-oxazoline (PIPOx) were grafted to functionalized glass and silica substrates with the aim to obtain thermoresponsive layers for potential application in cell sheet engineering. Presence of polymers covalently bonded to substrates was confirmed by FT-IR and XPS studies. The polymer layers were 5-50 nm thick, depending on the molar mass and polymer concentration. Microscopic techniques indicated a smooth surface of mPGl layers, slightly rough texture of PENOx layers and fibrille-like fibers surface of PIPOx layers. Ellipsometry and contact angle studies revealed the response of layers to temperature changes. Biocompatibility of layers with dermal fibroblasts was confirmed by toxicity tests. Thermoresponsive surfaces were employed as substrates for skin cell culture and harvesting. Fibroblasts adhesion and proliferation on investigated surfaces was comparable with control sample. A confluent cell sheet was formed after 24 hours of culture. The influence of surface properties on cell adhesion and proliferation was examined. Detachment of cells from surfaces was controlled by variation of the temperature. An intact monolayer of cultured dermal fibroblasts was detached. No mechanical or enzymatic methods were required to harvest the cell sheets. Skin cell sheets, detached from thermoresponsive polymer layers may be applied in the cell sheet engineering that is highly desirable in tissue regeneration.
Authors and Affiliations
Natalia Oleszko-Torbus, Alicja Utrata-Wesołek, Wojciech Wałach, Andrzej Dworak, Barbara Trzebicka
Główne metody syntezy soli piryliowych
Pyrylium salts are valuable organic aromatic compounds based on pyrylium cation, which are built from six-membered ring and contain one positively charged oxygen atom. The presence of a non-nucleophilic anion makes aroma...
Oligonukleotydy DNA jako warstwy receptorowe sensorów elektrochemicznych
The need for elaboration of analytical devices of small dimensions and the accessibility of novel nanomaterials caused the increase in the number of publications referring to the development of biosensors. DNA-based bios...
Krystalografia wysokich ciśnień, czyli jak zobaczyć strukturę materii…głębiej
During recent decades the number of high-pressure crystallographic studies has rapidly increased. This has been possible owing to the diamond-anvil cell, a small, relatively cheap and save apparatus breaking all records...
Błękit Majów , jedno z najważniejszych osiągnięć Mezoameryki
The Maya Blue is a famous blue pigment developed by pre-Columbian civilizations of Mesoamerica and manufactured there for about thousand years. It was applied for body decoration, important for cruel religious rituals, a...
Proteolityczny kombinat i jego regulatory
One of the proteolytic pathways existing in a cell is ubiquitin- proteasome system (UPS). This highly organized and ATP-dependent system is based on the multifunctional enzyme – the proteasome. Ubiquitin in this pathway...