О ВЕСЕ НИГДЕ НЕ ПЛОТНЫХ ПОДМНОЖЕСТВ

Journal Title: Проблемы анализа-Issues of Analysis - Year 2005, Vol 12, Issue

Abstract

In this paper we study the nd-weight of topological spaces. The relations between nd-weight, weight, density and cellularity are studied. The estimates for the nd-weight of the sum and the product of topological spaces are adduced. The problem of nd-weight increase at mappings is analysed, including the case of compact spaces.

Authors and Affiliations

М. А. КОНОНОВА

Keywords

Related Articles

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА В ФУНКЦИОНАЛЬНЫХ ПРОСТРАНСТВАХ МЕДЛЕННОГО РОСТА НА СВЕТОВОМ КОНУСЕ В R^3

В функциональных топологических векторных пространствах медленного роста на световом конусе X в R^3 получено полное описание строения всех замкнутых линейных подпространств, инвариантных относительно естественного квазир...

Multivariate Iyengar type inequalities for radial functions

Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in R^N, N>=2, and the related multivariate polar inte...

STRUCTURE OF KELLER MAPPINGS, TWO-DIMENSIONAL CASE

A Keller map is a polynomial mapping ƒ : Rⁿ → Rⁿ (or Cⁿ → Cⁿ) with the Jacobian Jƒ ≡ const ≠ 0. The Jacobian conjecture was first formulated by O. N. Keller in 1939. In the modern form it supposes injectivity of a Keller...

ВЗАИМНЫЕ МУЛЬТИФРАКТАЛЬНЫЕ СПЕКТРЫ I. ТОЧНЫЕ СПЕКТРЫ

It has introduced the fine mutual multifractal spectra for Borel probability measures and received the estimations for these spectra.

Download PDF file
  • EP ID EP243932
  • DOI -
  • Views 81
  • Downloads 0

How To Cite

М. А. КОНОНОВА (2005). О ВЕСЕ НИГДЕ НЕ ПЛОТНЫХ ПОДМНОЖЕСТВ. Проблемы анализа-Issues of Analysis, 12(), 12-16. https://europub.co.uk/articles/-A-243932