О ВЕСЕ НИГДЕ НЕ ПЛОТНЫХ ПОДМНОЖЕСТВ
Journal Title: Проблемы анализа-Issues of Analysis - Year 2005, Vol 12, Issue
Abstract
In this paper we study the nd-weight of topological spaces. The relations between nd-weight, weight, density and cellularity are studied. The estimates for the nd-weight of the sum and the product of topological spaces are adduced. The problem of nd-weight increase at mappings is analysed, including the case of compact spaces.
Authors and Affiliations
М. А. КОНОНОВА
ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА В ФУНКЦИОНАЛЬНЫХ ПРОСТРАНСТВАХ МЕДЛЕННОГО РОСТА НА СВЕТОВОМ КОНУСЕ В R^3
В функциональных топологических векторных пространствах медленного роста на световом конусе X в R^3 получено полное описание строения всех замкнутых линейных подпространств, инвариантных относительно естественного квазир...
Multivariate Iyengar type inequalities for radial functions
Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in R^N, N>=2, and the related multivariate polar inte...
STRUCTURE OF KELLER MAPPINGS, TWO-DIMENSIONAL CASE
A Keller map is a polynomial mapping ƒ : Rⁿ → Rⁿ (or Cⁿ → Cⁿ) with the Jacobian Jƒ ≡ const ≠ 0. The Jacobian conjecture was first formulated by O. N. Keller in 1939. In the modern form it supposes injectivity of a Keller...
ВЗАИМНЫЕ МУЛЬТИФРАКТАЛЬНЫЕ СПЕКТРЫ I. ТОЧНЫЕ СПЕКТРЫ
It has introduced the fine mutual multifractal spectra for Borel probability measures and received the estimations for these spectra.
О ЛОКАЛЬНОЙ РАЗРЕШИМОСТИ НАЧАЛЬНОЙ ЗАДАЧИ ДЛЯ НЕЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В БАНАХОВОМ ПРОСТРАНСТВЕ
In this paper it is prooved local solvability of initial problem for nonlinear differential equation in Banah space.