$\omega$-Euclidean domain and Laurent series
Journal Title: Карпатські математичні публікації - Year 2016, Vol 8, Issue 1
Abstract
It is proved that a commutative domain $R$ is $\omega$-Euclidean if and only if the ring of formal Laurent series over $R$ is $\omega$-Euclidean domain. It is also proved that every singular matrice over ring of formal Laurent series $R_{X}$ are products of idempotent matrices if $R$ is $\omega$-Euclidean domain.
Authors and Affiliations
O. M. Romaniv, A. V. Sagan
On central automorphisms of crossed modules
A crossed module (T,G,∂) consist of a group homomorphism ∂:T→G together with an action (g,t)→gt of G on T satisfying ∂(gt)=g∂(t)g−1 and ∂(s)t=sts−1, for all g∈G and s,t∈T. The term crossed module was introduced by J. H...
k-bitransitive and compound operators on Banach spaces
In this this paper, we introduce new classes of operators in complex Banach spaces, which we call k-bitransitive operators and compound operators to study the direct sum of diskcyclic operators. We create a set of suffic...
On the convergence criterion for branched continued fractions with independent variables
In this paper, we consider the problem of convergence of an important type of multidimensional generalization of continued fractions, the branched continued fractions with independent variables. These fractions are an ef...
Advancement on the study of growth analysis of differential polynomial and differential monomial in the light of slowly increasing functions
Study of the growth analysis of entire or meromorphic functions has generally been done through their Nevanlinna's characteristic function in comparison with those of exponential function. But if one is interested to com...
Skew semi-invariant submanifolds of generalized quasi-Sasakian manifolds
In the present paper, we study a new class of submanifolds of a generalized Quasi-Sasakian manifold, called skew semi-invariant submanifold. We obtain integrability conditions of the distributions on a skew semi-invaria...