On an algorithm for decision-making for the optimization of disease prediction at the primary health care level using neural network clustering

Journal Title: Family Medicine & Primary Care Review - Year 2018, Vol 20, Issue 2

Abstract

the questions of informatization in rural medicine are not completely resolved. It is important to optimize the prognosis of diseases using available and inexpensive information methods for the improvement of primary healthcare. Objectives. The aim of our study was to develop an algorithm to optimize the decision-making prognosis of disease at the primary health care level based on information methods. Material and methods. The data used for analysis originated from the survey results of 63 patients with hypertension in educational and practical centers of primary health care (EPCPHC) of Ternopil region (Ukraine). For a deeper analysis and clustering, the neural network approach was used with the NeuroXL Classifier add-in application for Microsoft Excel. Results. Thirteen (19.40%) patients experienced health deterioration and the development of complications. It has been established that neural network clustering could effectively and objectively allocate patients to the appropriate category in terms of the average survey results. Cluster analysis results have shown that the combination of high blood pressure (systolic, diastolic and pulse) gave reason to anticipate the deterioration of patients’ conditions. Conclusions. A decision algorithm was created in order to optimize the prediction of diseases at the primary health care level, and also to correct examination and treatment based on an analysis of average values of patients’ examination and the use of neural network clustering.

Authors and Affiliations

Petro Selskyy, Dmytro Vakulenko, Anatolii Televiak, Taras Veresiuk

Keywords

Related Articles

Choroby układu sercowo-naczyniowego w badaniach ankietowych pacjentów – potrzeba aktywnej edukacji medycznej

Wstęp. Choroby układu krążenia są niezwykle ważnym problemem zdrowotnym i ekonomicznym. Pomimo licznych programów prozdrowotnych osiągnięte rezultaty nie są zadowalające. Cel pracy. Ocena potrzeb w zakresie edukacji zdr...

Human AGT-p.Met268Thr and coronary heart disease risk: a case-control study and meta-analysis

Background. Polymorphisms in genes, which is involved in the renin–angiotensin system, play an important role in the pathogenesis of coronary heart disease (CHD). Polymorphism of c.803T>C in the human angiotensinogen gen...

Acute mastoiditis, a severe complication of acute otitis media in children – prevalence, diagnosis and treatment

Background. Acute otitis media in children is one of the most common causes of patients reporting to the family doctor and pediatrician. In rare cases, the inflammatory process spreads deeper into the temporal bone despi...

Medycyna okołooperacyjna – strategie redukcji ryzyka

Współcześnie coraz większa liczba problemów medycznych może być skutecznie leczona technikami chirurgicznymi.Poprawę wyników leczenia operacyjnego przynosi wdrożenie całościowego, multidyscyplinarnego pakietu postępowani...

Częstość wykrywania antygenu Chlamydophila pneumoniae u dzieci z kaszlem

Wstęp. Chlamydophila pneumoniae to drobnoustrój wywołujący zakażenia dróg oddechowych u człowieka. Cel pracy. Ocena częstości występowania zakażeń Chl. pneumoniae u dzieci z objawami długotrwałego kaszlu. Materiał i me...

Download PDF file
  • EP ID EP363981
  • DOI -
  • Views 60
  • Downloads 0

How To Cite

Petro Selskyy, Dmytro Vakulenko, Anatolii Televiak, Taras Veresiuk (2018). On an algorithm for decision-making for the optimization of disease prediction at the primary health care level using neural network clustering. Family Medicine & Primary Care Review, 20(2), 171-175. https://europub.co.uk/articles/-A-363981