On convergence (2,1,...,1)-periodic branched continued fraction of the special form
Journal Title: Карпатські математичні публікації - Year 2015, Vol 7, Issue 2
Abstract
(2,1,...,1)-periodic branched continued fraction of the special form is defined. Conditions of convergence are established for 2-periodic continued fraction and (2,1,...,1)-periodic branched continued fraction of the special form. Truncation error bounds are estimated for these fractions under additional conditions.
Authors and Affiliations
D. Bodnar, M. M. Bubniak
A Worpitzky boundary theorem for branched continued fractions of the special form
For a branched continued fraction of a special form we propose the limit value set for the Worpitzky-like theorem when the element set of the branched continued fraction is replaced by its boundary.
Some analytic properties of the Weyl function of a closed linear relation
Let L and L0, where L is an expansion of L0, be closed linear relations (multivalued operators) in a Hilbert space H. In terms of abstract boundary operators (i.e. in the form which in the case of differential operators...
On central automorphisms of crossed modules
A crossed module (T,G,∂) consist of a group homomorphism ∂:T→G together with an action (g,t)→gt of G on T satisfying ∂(gt)=g∂(t)g−1 and ∂(s)t=sts−1, for all g∈G and s,t∈T. The term crossed module was introduced by J. H...
Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex $L_\infty$
It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$...
On Wick calculus on spaces of nonregular generalized functions of Levy white noise analysis
Development of a theory of test and generalized functions depending on infinitely many variables is an important and actual problem, which is stipulated by requirements of physics and mathematics. One of successful appr...