On micropolar theory of shallow shells

Abstract

The simplified theory of the shallow shells is suggested on the base of the Kirchhof-Love hypothesis and psevdo-Cosserat medium. The bending and vibrations problem of the shallow spherical shell is investigated. The value of shell small thickness is determined, when microrotational are essential.

Authors and Affiliations

Sergey Ambartsumian, Mels Belubekyan

Keywords

Related Articles

Optimal guaranteeing control of target object search moving on the plane.

The problem of optimal guaranteed search of the object performing controlled moving on the plane is considered. It is supposed that the location of required object at the initial moment is indefinite in the given domain....

Mathematical Models of Magnetoelasticity of Micropolar Conductive (No Ferromagnetic) Thin Shells

In the paper, taking into consideration qualitative aspects of the asymptotic solution of three dimensional initial boundary-value problem of magnetoelasticity for micropolar conductive (no ferromagnetic) body, general h...

About the indentation of a rigid punch with concave base into half plane, taking into account the influence of filler in cavity

The contact problem of elasticity theory about the indentation of a rigid punch with concave base into elastic half plane is considered. It is supposed that the cavity between punch and boundary of half plane is filled w...

Download PDF file
  • EP ID EP602147
  • DOI -
  • Views 74
  • Downloads 0

How To Cite

Sergey Ambartsumian, Mels Belubekyan (2010). On micropolar theory of shallow shells. Հայաստանի գիտությունների ազգային ակադեմիայի տեղեկագիր․ Մեխանիկա, 63(3), -. https://europub.co.uk/articles/-A-602147