On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions

Abstract

The following problem arises: to nd optimal subspaces for Kolmogorov widths of classes of convolutions with generated kernels, which may increase the oscillations.

Authors and Affiliations

Anatoly S. Serdyuk

Keywords

Related Articles

Volumes of polyhedra in terms of determinants of rectangular matrices / Objętości wielościanów wyrażone za pomocą wyznaczników macierzy prostokątnych

Formulas for volumes of octahedra, tetragonal pyramids, triangular prisms and truncated triangular prisms, involving determinants of rectangular matrices, are presented.

On the uniform convergence of Cox-Ross-Rubinstein Formulas to the Black-Scholes formula / Jednostajna zbieżność formuł Coxa-Rossa-Rubinsteina do formuły Blacka-Scholesa

We prove that the convergence of calibrated Cox-Ross-Rubinstein option price formulas to the Black-Scholes formula is uniform with respect to initial stock price s0 2 (∈; ∞)

Reduced incidence algebras description of cobweb posets and KoDAGs

The notion of reduced incidence algebra of an arbitrary cobweb poset is delivered. The incidence algebra combinatorial characterization for an arbitrary positive integers valued sequence is given.

On semiregularization of the density-type topologies / O semiregularyzacji topologii typu gęstościowego

We show that for several density topologies the semi-regularization of the topology is the coarsest topology for which the functions approximately continuous with respect to the topology are continuous. We show various m...

Download PDF file
  • EP ID EP236244
  • DOI 10.26485/0459-6854/2017/67.1/3
  • Views 56
  • Downloads 0

How To Cite

Anatoly S. Serdyuk (2017). On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions. Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations, 0(1), 45-48. https://europub.co.uk/articles/-A-236244