On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions

Abstract

The following problem arises: to nd optimal subspaces for Kolmogorov widths of classes of convolutions with generated kernels, which may increase the oscillations.

Authors and Affiliations

Anatoly S. Serdyuk

Keywords

Related Articles

Duality Principle for some σ-ideals of subsets of the real line / Zasada dualności dla pewnych σ- ideałów podzbiorów prostej rzeczywistej

In this note there is proved that a theorem analogous to Sierpinski-Erdös duality theorem for some σ -ideals of subsets of the real line and the family of sets of the first category on the real line is valid.

On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions

The following problem arises: to nd optimal subspaces for Kolmogorov widths of classes of convolutions with generated kernels, which may increase the oscillations.

On some coeffcient inequality in the subclass of close-to-convex functions

A coefficient inequality related to the Fekete-Szegö-Goluzin problem in some subclass of close-to-convex functions is shown.

Download PDF file
  • EP ID EP236244
  • DOI 10.26485/0459-6854/2017/67.1/3
  • Views 58
  • Downloads 0

How To Cite

Anatoly S. Serdyuk (2017). On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions. Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations, 0(1), 45-48. https://europub.co.uk/articles/-A-236244