On the role of lipid metabolism and lipid peroxidation in the development of retinal disorders in type 2 diabetic rats with myopia
Journal Title: Офтальмологический журнал - Year 2019, Vol 0, Issue 5
Abstract
Background. There are current data on the role of dyslipidemia and enhanced processes of lipid peroxidation (LPO) in the pathogenesis of diabetic retinopathy (DR). However, pathogenic mechanisms which can explain the link between main parameters of lipid metabolism and development of DR, especially in high myopia, are still understudied. Purpose. To study the parameters of lipid metabolism and lipid peroxidation in blood and retina of streptozotocin-induced diabetic rats with deprivation myopia with a purpose to reveal the pathogenetic features of the development of type 2 diabetes mellitus in the presence of myopia. Material and Methods. The study was performed on Wistar rats. The rabbits were divided into four groups: group 1, 15 rabbits with axial myopia; group 2, 15 rats with diabetes; group 3, 15 rats with myopia and diabetes; 10 intact rats serving as controls. Eyelids of two-week animals (30 rats) were sutured to induce axial myopia, according to Beuerman R.W. et al. The animals were kept under poor light conditions for 14 days. After a fortnight, the sutures were removed. In two weeks, 15 rats with myopia and 15 intact rats were induced type 2 diabetes mellitus (T2DM). T2DM was induced using 5 daily intraperitoneal injections of streptozotocin (15.0 mg per 1 kg). The control rats were kept under natural light condition. The criterion of diabetes onset was an increase in the blood glucose level up to 4.5mmol/L. After two months, the animals were sacrificed under general anesthesia and the eyeballs were enucleated. To assess myopia severity, axial length was measured post mortem using a digital sliding caliper (Topex) with 0.02 mm accuracy. Levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) [16, 17], diene conjugates (DC), and malondialdehyde (MDA) were evaluated in the blood plasma and DC and MDA levels were measured in the retina. The Atherogenic Index (AI) was calculated. Data obtained were processed statistically with the parametric Student-t test using a software program (Statistica). Results. Expressed disorders were revealed in lipid metabolism, including increased levels of TC, LDL-C, TG, decreased HDL-C, and those in ratios of metabolic parameters in the blood of STZ diabetic rats with and without myopia. No significant changes in the levels of TC, TG, LDL-C, and HDL-C were noted in the rats with deprivation myopia, which gives evidence that there are no disorders in lipid metabolism in the presence of myopia. Our study revealed no significant difference in lipid profile outcomes between the diabetic-only animals and diabetic animals with myopia. Studying LPO parameters in deprivation myopia showed a statistically insignificant increase in the levels of MDA and DC both in the blood plasma and retina of the myopic rats as compared with controls. STZ-induced diabetes resulted in significant changes in the level of LPO products in the rats’ blood plasma and retina. The MDA level was 3.8 times increased in diabetes (р<0.001) and 4.6 times increased in diabetes with myopia (р<0.001) as compared with control. Similar changes were noted in the DC level, which was increased, as compared with control, by 118.8% (р<0.001) and 169.4% (р<0.001) in diabetes only and diabetes with myopia, respectively. Statistically insignificant changes in the levels of LPO were noted in the diabetic rats as compared with the diabetic rats with myopia. Conclusions. Disorders in lipid metabolism parameters in the peripheral blood were revealed both in SZT-induced diabetes and in SZT-induced diabetes in combination with axial myopia. There was no significant difference in lipid metabolism markers between groups with diabetes only and diabetes with axial myopia. Thus, the presence of axial myopia does not worsen lipid metabolism in the SZT-induced diabetic rats. The experiment confirmed the fact that lipid peroxidation is activated in the blood and retina of the SZT-induced diabetic rats; it is also activated in diabetes developed against axial myopia. No significant difference was revealed in the LPO parameters between diabetic rats with and without myopia.
Authors and Affiliations
Abdulhadi Mohammad, I. Mikheitseva, S. Kolomiichuk
Case report: Treatment of vitreous hemorrhage in the presence of diabetic retinopathy
-
Spectral light sensitivity and anomalous quotient in anomalous trichromats with protanomaly and deutanomaly
Background. An ability to precisely distinguish red and green colors is crucial for many professions, which has conditioned the importance of color vision diagnostics and its application in vocational selection. Purpose:...
Prevalence of and risk factors for diabetic retinopathy in areas differing in local access to endocrinologic care
Purpose: To investigate the prevalence of and risk factors for diabetic retinopathy in areas differing in access to endocrinologic care. Materials and Methods: The study was conducted in the Ganja-Gazakh economic region...
The method of four-point fixation of the intraocular lens in the absence of capsular support (preliminary study)
Introduction. Fixation of an intraocular lens (IOL) in the absence of capsular support is still a challenge for ophthalmic surgeons. Purpose. To develop a technique of four-point IOL fixation in the absence of capsular...
On the scientific results of the 3rd Global Pediatric Ophthalmology Congress (London 2018) and on the effectiveness of publishing articles in high-ranked ophthalmology journals
In this day and age of information technology and significantly accelerated scientific and technical progress in all fields of knowledge including ophthalmology, it is crucial for scientific results obtained to be publis...