Opioid peptide-derived analgesics
Journal Title: The AAPS Journal - Year 2005, Vol 7, Issue 3
Abstract
Two recent developments of opioid peptide-based analgesics are reviewed. The first part of the review discusses the dermorphin-derived, cationic-aromatic tetrapeptide H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA, where Dmt indicates 2′,6′-dimethyltyrosine), which showed subnanomolar μ receptor binding affinity, extraordinary μ receptor selectivity, and high μ agonist potency in vitro. In vivo, [Dmt1]DALDA looked promising as a spinal analgesic because of its extraordinary antinociceptive effect (3000 times more potent than morphine) in the mouse tail-flick assay, long duration of action (4 times longer than morphine), and lack of effect on respiration. Unexpectedly, [Dmt1]DALDA also turned out to be a potent and long-acting analgesic in the tail-flick test when given subcutaneously (s.c.), indicating that it is capable of crossing the blood-brain barrier. Furthermore, little or no cross-tolerance was observed with s.c. [Dmt1]DALDA in morphine-tolerant mice. The second part of the review concerns the development of mixed μ agonist/δ antagonists that, on the basis of much evidence, are expected to be analgesics with a low propensity to produce tolerance and physical dependence. The prototype pseudopeptide H-Dmt-TicΨ[CH2NH]Phe-Phe-NH2 (DIPP-NH2[Ψ], where Tic indicates 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) showed subnanomolar μ and δ receptor binding affinities and the desired μ agonist/δ antagonist profile in vitro. DIPP-NH2[Ψ] produced a potent analgesic effect after intracerebroventricular administration in the rat tail-flick assay, no physical dependence, and less tolerance than morphine. The results obtained with DIPP-NH2[Ψ] indicate that mixed μ agonist/δ antagonists look promising as analgesic drug candidates, but compounds with this profile that are systemically active still need to be developed.
Authors and Affiliations
Peter W. Schiller
A Multi-Tiered Analytical Approach For the Analysis and Quantitation of High-Molecular-Weight Aggregates in a Recombinant Therapeutic Glycoprotein
In this study, we have investigated sedimentation velocity ultracentrifugation (AUC-SV), size exclusion chromatography (SEC), and circular dichroism (CD) methods for the detection and quantitation of protein aggregates u...
Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans
To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma f...
Physical chemical stability of warfarin sodium
Crystalline warfarin sodium is an isopropanol clathrate containing 8.3% isopropyl alcohol (IPA) and 0.57% water upon receipt. The hygroscopicity and impact of moisture on IPA status as well as on the stability of the cla...
An Extended Minimal Physiologically Based Pharmacokinetic Model: Evaluation of Type II Diabetes Mellitus and Diabetic Nephropathy on Human IgG Pharmacokinetics in Rats
Although many studies have evaluated the effects of type 2 diabetes mellitus (T2DM) on the pharmacokinetics (PK) of low molecular weight molecules, there is limited information regarding effects on monoclonal antibodies....
A simultaneous assessment of CYP3A4 metabolism and induction in the DPX-2 cell line
The DPX-2 cell line, a derivative of HepG2 cells, harbors human PXR and a luciferase-linked CYP3A4 promoter. These cells were used in a panel of cell-based assays for a parallel assessment of CYP3A4 induction, metabolism...