Optimization the Spray-Drying Process of Moldavian Balm Plant Extract using Response Surface Methodology and TOPSIS Method

Journal Title: Journal of Agricultural Machinery - Year 2020, Vol 10, Issue 2

Abstract

Introduction Dracocephalum moldavica L. is an annual plant with blue or white flowers and fragrant leaves which belongs to the family of Lamiaceae with the height of up to 80 cm. This plant is native to Central Asia and is accepted in Central and Eastern Europe. In Iran, it is mainly grown in the province of West Azarbaijan and the Alborz Mountains. The essential oils and extracts derived from the secondary metabolisms which are mainly used in the pharmaceutical industry, dietary, cosmetic, flavoring and also as tea and beverage with sugar or honey. The liquid extract of the herb contains a high percentage of water, which should evaporate to increase shelf-life, easy transport, handling and storage, the ease of standardization and preservation of the product quality. On the other hand, the active compounds of the extracts are affected by temperature, oxygen, light and enzymes. Therefore, because of the uses and benefits of herbal extracts, they need to be dried by a practical and effective method like spray drying. In literature still there are no studies taking into account to the comparisons between RSM and TOPSIS as two important optimization methods. So, as the main objective of the present work, the effects of moisture content, drying performance, total phenol content, total flavonoid content and antioxidant activity have been surveyed. Finally, the optimal point of each process variable was presented by two optimization methods. Materials and Methods Aerial parts of Moldavian balm plant were cleaned and drying of plant was carried out under shade and thin layer conditions. The extraction of Moldavian balm was obtained by maceration method using ethanol 50 % (v/v), plant to solvent ratio of 1/10 (w/v). After 48h, the extract was concentrated in a rotary evaporator (Buchi Rotavapor R-205, Switzerland) to obtain a solid concentration of 6%. The used carrier was: Maltodextrin and apple pectin. Different ratios of carrier were prepared, then the ratio was added to distilled water and stirred by a magnetic stirrer. Finally, the solution was mixed with extract. The drying of Moldavian Balm plant extract was performed using a spray-dryer (Büchi B-191, Switzerland) with co-current flow regime. The powders provided by the spray drying were stored in refrigerator until they were needed for the experiment. Results and Discussion The results of variance analysis showed that the Box-Behnken design with the second-order model has led to the meaningfulness of the model, insignificant of the Lack of Fit and the appropriate correlation coefficient for each of the responses. A total number of 15 experiments were conducted to investigate the effect of process variables such as inlet air temperature, compressed air flow rate and concentration of carriers on moisture content, drying performance, total phenolic content, total flavonoid content and antioxidant activity of  Moldavian balm powder. Inlet air temperature and compressed air flow rate had the most significant effect on moisture content and drying performance, while Chemical properties of the powder affected by changing the concentration of carriers. Optimization parameters of the spray drying process was performed using surface response and TOPSIS methods. The optimum predicted conditions in the response surface method and TOPSIS method were obtained at inlet air temperature, compressed air flow rate and concentration of carrier (152.5-150°C), (8.046-7.5 lit min-1) and 20%, respectively. Conclusion By comparing two methods, it can be concluded that although they could provide the same optimum points, the RSM is more efficient. Because RSM offers a mathematical model that can be used at any desired point of variables to predict the output quantities as well as describing the process trend, while TOPSIS method is unable to predict the process trend and only provides the ranking of alternatives.

Authors and Affiliations

E. Rahmati,F. Sharifian,M. Fattahi,Gh. Najafi,

Keywords

Related Articles

Construction and Performance Evaluation of a Flow Meter Based on Thermal Pulse to Measure Plant Sap Flow in Vascular Tissues

IntroductionNeglecting the water requirements of trees can result in inefficient irrigation practices, leading to either water wastage or drought stress. Effective irrigation management necessitates precise information o...

Energy Flow Simulation of the Uneven Span Glass Greenhouse with Special Structure using Computational Fluid Dynamics (CFD)

IntroductionGreenhouse cultivation is the popular intensive kind of crop production with a yield per cultivated unit area more than 10 times higher compared to field crops. Greenhouse production requires the use of large...

Investigating the Effect of Storage Time on the Mechanical Properties of Biodegradable Polylactic Acid Film Containing Zinc Oxide Nanoparticles

IntroductionPolylactic acid (PLA) is a biodegradable polymer that can replace petroleum-based materials in packaging films due to its unique properties. However, sometimes the degradability of polymers can be considered...

Investigation of the Motive Steam Pressure Effect on Performance and Reverse Flows in Sugar Factory Thermo-compressor: Validation and Numerical Study

IntroductionThermo-compressors or ejectors are used to enhance the vapor enthalpy in the process industry. The low costs of construction and maintenance, and simple structure, have increased by using this equipment in re...

Construction and Assessment of an on the Go Soil Electrical

The issue of soil salinity is one of the snags for increasing agricultural productivity, which must be inhibited by appropriate devise and scientific management. One way to identify salty areas of farm lands is to prepar...

Download PDF file
  • EP ID EP717956
  • DOI https://doi.org/10.22067/jam.v10i2.78344
  • Views 62
  • Downloads 0

How To Cite

E. Rahmati, F. Sharifian, M. Fattahi, Gh. Najafi, (2020). Optimization the Spray-Drying Process of Moldavian Balm Plant Extract using Response Surface Methodology and TOPSIS Method. Journal of Agricultural Machinery, 10(2), -. https://europub.co.uk/articles/-A-717956