Oscillation of third-order delay difference equations with negative damping term
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2018, Vol 72, Issue 1
Abstract
The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from its relation to certain associated first-order delay difference equations or inequalities. Examples are given to illustrate the main results.
Authors and Affiliations
Martin Bohner, Srinivasan Geetha, Ethiraju Thandapani
Some properties for α-starlike functions with respect to k-symmetric points of complex order
In the present work, we introduce the subclass Tkγ,α(φ), of starlike functions with respect to k-symmetric points of complex order γ (γ≠0) in the open unit disc △. Some interesting subordination criteria, inclusion relat...
A survey of a selection of methods for determination of Koebe sets
In this article we take over methods for determination of Koebe set based on extremal sets for a given class of functions.
The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
Let T = (V, E) be a 3-uniform linear hypertree. We consider a blow-up hypergraph B[T ]. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph B[T ] of the hypertree T , w...
On almost polynomial structures from classical linear connections
Let Mfm be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on Mfm. Let V be the category of real vector spaces and linear maps and let Vm be the category of m-dimensiona...
Generalized trend constants of Lipschitz mappings
In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point...