Oscillatory and Asymptotic Behavior of Second Order Neutral Difference Equations with Maxima
Journal Title: JOURNAL OF ADVANCES IN MATHEMATICS - Year 2014, Vol 9, Issue 2
Abstract
In this paper, we deal with the oscillatory and asymptotic behavior of second order neutral difference equations with maxima of the form† (an∆ (xn + pnxn−k)) + qn max [n−m,n] x α s = 0, n ∈ N(n0). Example are given to illustrate the main result.
Authors and Affiliations
R. Arul, M. Angayarkanni
Oscillation of third order Impulsive Differential Equations with delay
This paper deals with the oscillation of third order impulsive differential equations with delay. The results of this paper improve and extend some results for the differential equations without impulses. Some examp...
Inventory Model with Time-Dependent Holding cost under Inflation when Seller Credits to Order Quantity
In this study an inventory model is developed under which the seller provides the retailer a permissible delay in payments, if the retailer orders a large quantity. In this paper we establish an inventory model for non d...
Transient behavior of / /1 [ ] M G X Queueing Model With State Dependent Arrival, Balking and Bernoulli Vacation
This paper analyzes single server queueing system wherein the arrival units are in batches following compound Poisson process with varying arrival rates for different states. The arrival rates differ for different s...
Single-Layer Raster CNN simulator using RK-Gill
An efficient numerical integration algorithm for single layer Raster Cellular Neural Networks (CNN) simulator is presented in this paper. The simulator is capable of performing CNN simulations for any size of input image...
Continuous Generalized Hankel-type integral wavelet transformation
Using the theory of Hankel-type convolution, continuous generalized Hankel-type wavelet integral transformation is defined. The generalized Hankel-type integral wavelet transformation is developed. Using the...