Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making

Journal Title: International Journal of Knowledge and Innovation Studies - Year 2024, Vol 2, Issue 1

Abstract

The T-spherical fuzzy set (T-SFS), an advancement over the spherical fuzzy set (SFS), offers a refined approach for addressing contradictions and ambiguities in data. In this context, similarity measures (SMs) serve as critical tools for quantifying the resemblance between fuzzy values, traditionally relying on the calculation of distances between these values. Nevertheless, existing methodologies often encounter irrational outcomes due to certain characteristics and complex operations involved. To surmount these challenges, a novel parametric similarity measure is proposed, grounded in three adjustable parameters. This enables decision-makers to tailor the SM to suit diverse decision-making styles, thereby circumventing the aforementioned irrationalities. An analytical comparison with existing SM reveals the superiority of the proposed measure through mathematical validation. Furthermore, the utility of this measure is demonstrated in the resolution of multi-attribute decision-making (MADM) problems, highlighting its efficacy over several existing approaches within the domain of T-SFS. The implementation of the proposed SM not only enhances the precision of similarity assessment in fuzzy sets but also significantly contributes to the optimization of decision-making processes.

Authors and Affiliations

Mehwish Sarfraz, Muhammad Azeem

Keywords

Related Articles

A Method for Creative Scheme Generation for Brand Design of Plush Toys Based on Extension Theory

In the era of branding, the design of plush toy brands often faces a contradiction with the needs of target user groups. Addressing the brand transformation challenges faced by small and micro enterprises in the plush to...

A Blockchain Cross-Chain Solution Based on Relays

Blockchain has attracted widespread attention due to its unique features such as decentralization, traceability, and tamper resistance. With the rapid development of blockchain technology, an increasing number of industr...

Enhanced Global Image Segmentation: Addressing Pixel Inhomogeneity and Noise with Average Convolution and Entropy-Based Local Factor

In the field of computer vision and digital image processing, the division of images into meaningful segments is a pivotal task. This paper introduces an innovative global image segmentation model, distinguished for its...

Enhanced Prediction Accuracy in Complex Systems: An Approach Integrating Fuzzy K-Clustering and Fuzzy Neural Network

The quest for heightened precision in fuzzy system predictions has culminated in the development of an innovative model that integrates a Fuzzy K-Clustering (FKC) algorithm with a fuzzy neural network (FNN). In this appr...

Utilizing Edge Cloud Computing and Deep Learning for Enhanced Risk Assessment in China’s International Trade and Investment

Amidst a transformative economic milieu in China, domestic enterprises are venturing into the global market, exposing them to intensified perils in international trade and investment. This research elucidates the interna...

Download PDF file
  • EP ID EP744649
  • DOI https://doi.org/10.56578/ijkis020104
  • Views 41
  • Downloads 0

How To Cite

Mehwish Sarfraz, Muhammad Azeem (2024). Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making. International Journal of Knowledge and Innovation Studies, 2(1), -. https://europub.co.uk/articles/-A-744649