Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System

Journal Title: Fibres and Textiles in Eastern Europe - Year 2017, Vol 25, Issue 1

Abstract

This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.

Authors and Affiliations

Abul Hasnat, Anindya Ghosh, Amina Khatun, Santanu Halder

Keywords

Related Articles

Numerical and Experimental Analysis for Shape Improvement of a Cruciform Composite Laminates Specimen

The use of composite materials has spread to different applications among which, those using thin sheet plates subjected to biaxial loads are commonly used in the car and aerospace industries. Hence, there is need of a r...

Obtaining New Biopolymer Materials by Electrospinning

The paper covers aspects of the technology of fibre electrospinning for the production of nonwoven fabrics for various application areas. The conditions of forming nano- and microfibres from solutions of collagen hydroly...

Analiza charakterystyki dynamicznej mechanizmu napędzającego system igłowy w maszynie do produkcji dywanów

W typowej maszynie wiążącej dywany charakterystyki kinematyczne i dynamiczne mechanizmu napędzającego układ igieł są bardzo ważnym czynnikiem określającym jakość wytwarzanych dywanów. Dla otrzymania racjonalnej podstawy...

Antimicrobial Activity of Monolayer and Multilayer Films Containing Polyhexamethylene Guanidine Sulphanilate

The aim of this study was to determine the antimicrobial properties of multilayer films containing a PHMG sulphanilate (polyhexamethylene guanidine sulphanilate). Three types of films were selected: monolayer and three-l...

Download PDF file
  • EP ID EP199554
  • DOI 10.5604/01.3001.0010.1709
  • Views 86
  • Downloads 0

How To Cite

Abul Hasnat, Anindya Ghosh, Amina Khatun, Santanu Halder (2017). Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System. Fibres and Textiles in Eastern Europe, 25(1), 42-48. https://europub.co.uk/articles/-A-199554