Performance Evaluation of Different Feature Extractors and Classifiers for Recognition of Human Faces with Low Resolution Images

Abstract

Face recognition is an effective biometric identification technique used in many applications such as law enforcement, document validation and video surveillance. In this paper the effect of low resolution images which are captured in real world applications, on the performance of different feature extraction techniques combined with a variety of classification approaches is evaluated. Gabor features and its combination with local phase quantization histogram (GLPQH) are dimensionality reduced by principal component analysis (PCA), linear discriminant analysis (LDA), locally sensitive discriminant analysis (LSDA) and neighbourhood preserving embedding (NPE) to extract discriminant image characteristics and the class label is attributed using the extreme learning machine (ELM), sparse classifier (SC), fuzzy nearest neighbour (FNN) or regularized discriminant classifier (RDC). ORL and AR databases are utilized and the results show that ELM and RDC have better performance and stability against resolution reduction, especially on Gabor-PCA and Gabor-LDA techniques. Among the interpolation approaches that we employed to enhance the image resolution, nearest neighbour outperforms other methods.

Authors and Affiliations

Soodeh Nikan*| ECE, University of Windsor, Windsor, ON – N9B 3P4, Canada, Majid Ahmadi| ECE, University of Windsor, Windsor, ON – N9B 3P4, Canada

Keywords

Related Articles

Process modelling and simulation of a Simple Water Treatment Plant

Water treatment plants are likely to experience problems such as the water level both in the filter cells and in the tanks tend to fluctuate widely. These create the potential for partial drainage, overflow, and potentia...

Particle Swarm Optimization Based Approach for Location Area Planning in Cellular Networks

Location area planning problem plays an important role in cellular networks because of the trade-off caused by paging and registration signalling (i.e., location update). Compromising between the location update and the...

Adaptive Control Solution for a Class of MIMO Uncertain Underactuated Systems with Saturating Inputs

This paper addresses the issue of controller design for a class of multi-input multi-output (MIMO) uncertain underactuated systems with saturating inputs. A systematic controller framework, composed of a hierarchically g...

Classification of Wheat Types by Artificial Neural Network

In this study, the types of wheat seeds are classified using present data with artificial neural network (ANN) approach. Seven inputs, one hidden layer with 10 neurons and one output has been used for the ANN in our syst...

A Modified Flower Pollination Algorithm forFractional Programming Problems

Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed chaos-based Flower Pollination Algorithm (CFPA) to solve Fractio...

Download PDF file
  • EP ID EP773
  • DOI 10.18201/ijisae.28949
  • Views 444
  • Downloads 22

How To Cite

Soodeh Nikan*, Majid Ahmadi (2015). Performance Evaluation of Different Feature Extractors and Classifiers for Recognition of Human Faces with Low Resolution Images. International Journal of Intelligent Systems and Applications in Engineering, 3(2), 72-77. https://europub.co.uk/articles/-A-773