Pharmacokinetics in mice implanted with xenografted tumors after intravenous administration of tasidotin (ILX651) or its carboxylate metabolite
Journal Title: The AAPS Journal - Year 2007, Vol 9, Issue 3
Abstract
The pharmacokinetics of tasidotin (ILX651), a depsipeptide currently in phase II for the treatment of advanced solid tumors, and tasidotin-C-carboxylate, the main metabolite, were characterized in male nude mice implanted with LOX tumors, which are sensitive to tasidotin, or H460 tumors, which are resistant to tasidotin. The pharmacokinetics of tasidotin and its metabolites were characterized after singledose administration of tasidotin (20 and 120 mg/kg), tasidotin-C-carboxylate (150 mg/kg), or tasidotin (53 mg/kg) in the presence and absence of Z-prolyl prolinal (5 mg/kg administered 1 hour prior to tasidotin administration), a competitive antagonist of prolyl oligopeptidase, the enzyme responsible for the metabolism of tasidotin to tasidotin-C-carboxylate. A secondary study was done comparing tumor growth in tasidotin-treated mice with implanted LOX tumors in the presence and absence of Z-prolyl-prolinal. After tasidotin administration, the pharmacokinetics of tasidotin and tasidotin-C-carboxylate were similar in plasma and tumors in LOX- and H460-implanted mice, indicating the resistance was not due to pharmacokinetic factors. Tumor carboxylate concentrations were much higher than in plasma after tasidotin administration. The metabolite appeared to contribute ∼17% to 33% to the total exposure in LOX tumors and 20% to 49% in H460 tumors but <5% in plasma. Less than 5% of the administered tasidotin dose was converted to tasidotin-C-carboxylate, with no apparent differences between LOX- and H460-treated animals. The presence of Z-prolyl-prolinal decreased the amount of tasidotin converted to tasidotin-C-carboxylate from 5.5% to 0.90%, a reduction of almost 80%. After tasidotin-C-carboxylate administration, the half-life was on the order of minutes compared with hours when observed after tasidotin administration. Tasidotin-C-carboxylate elimination was not dependent on tasidotin pharmacokinetics, suggesting that the rate of efflux from cells into plasma was the rate-limiting step in its elimination. Tasidotin-C-carboxylate was also further metabolized to desprolyl-tasidotin-C-carboxylate, although the metabolite ratios were <10%. Pretreatment with Z-prolyl-prolinal completely abolished the antitumor activity of tasidotin, indicating that the metabolite is the main moiety responsible for activity and that, despite tasidotin itself having activity in vitro, tasidotin is acting mainly as a prodrug.
Authors and Affiliations
Peter L. Bonate, David Beyerlein, Jennifer Crawford, Stephanie Roth, Roy Krumbholz, Steve Schmid
Measurement of Free Versus Total Therapeutic Monoclonal Antibody in Pharmacokinetic Assessment is Modulated by Affinity, Incubation Time, and Bioanalytical Platform
Decisions about efficacy and safety of therapeutic proteins (TP) designed to target soluble ligands are made in part by their ex vivo quantification. Ligand binding assays (LBAs) are critical tools in measuring serum TP...
Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development
Whole-body autoradiography ((WBA) or quantitative WBA (QWBA)), microautoradiography (MARG), matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), and secondary ion mass spectrometric imaging...
Controlled Release of Simvastatin from In situ Forming Hydrogel Triggers Bone Formation in MC3T3-E1 Cells
Simvastatin (SIM), a drug commonly administered for the treatment of hypercholesterolemia, has been recently reported to induce bone regeneration/formation. In this study, we investigated the properties of hydrogel compo...
Independence of substituent contributions to the transport of small-molecule permeants in lipid bilayer
Purpose: To explore the independence of functional group contributions to permeability of nonelectrolytes across egg lecithin bilayers. Methods. The transport rates were measured of a series of α-substituted p-me...
Pulmonary Toxicity of Polysorbate-80-coated Inhalable Nanoparticles; In vitro and In vivo Evaluation
Using inhalable nanoparticles (NPs) to treat pulmonary diseases is an emerging field (1). Lungs as part of the mononuclear phagocyte system (MPS) are extensively rich with alveolar macrophages (2). These alveolar macroph...