Points of narrowness and uniformly narrow operators
Journal Title: Карпатські математичні публікації - Year 2017, Vol 9, Issue 1
Abstract
It is known that the sum of every two narrow operators on $L_1$ is narrow, however the same is false for $L_p$ with $1 < p < \infty$. The present paper continues numerous investigations of the kind. Firstly, we study narrowness of a linear and orthogonally additive operators on K\"{o}the function spaces and Riesz spaces at a fixed point. Theorem~1 asserts that, for every K\"{o}the Banach space $E$ on a finite atomless measure space there exist continuous linear operators $S,T: E \to E$ which are narrow at some fixed point but the sum $S+T$ is not narrow at the same point. Secondly, we introduce and study uniformly narrow pairs of operators $S,T: E \to X$, that is, for every $e \in E$ and every $\varepsilon > 0$ there exists a decomposition $e = e' + e''$ to disjoint elements such that $\|S(e') - S(e'')\| < \varepsilon$ and $\|T(e') - T(e'')\| < \varepsilon$. The standard tool in the literature to prove the narrowness of the sum of two narrow operators $S+T$ is to show that the pair $S,T$ is uniformly narrow. We study the question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no counterexample, we prove several theorems showing that the answer is affirmative for some partial cases.
Authors and Affiliations
A. Gumenchuk, I. Krasikova, M. Popov
First Reformulated Zagreb Indices of Some Classes of Graphs
A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. Graph operations plays a vital role to analyze the structure and properties of...
Mixed problem for the singular partial differential equation of parabolic type
The scheme for solving of a mixed problem is proposed for a differential equation a(x)∂T∂τ=∂∂x(c(x)∂T∂x)−g(x)T with coefficients a(x), g(x) that are the generalized derivatives of functions of bounded variation, c(x)>0,...
Some analytic properties of the Weyl function of a closed linear relation
Let L and L0, where L is an expansion of L0, be closed linear relations (multivalued operators) in a Hilbert space H. In terms of abstract boundary operators (i.e. in the form which in the case of differential operators...
ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID
We give sufficient conditions when a topological inverse l-polycyclic monoid Pl is absolutely Hclosed in the class of topological inverse semigroups. For every infinite cardinal l we construct the coarsest semigroup inve...
A class of Julia exceptional functions
The class of $p$-loxodromic functions (meromorphic functions, satisfying the condition $f(qz) = pf(z)$ for some $q \in \mathbb{C}\backslash \{0\}$ and all $z \in \mathbb{C}\backslash \{0\}$) is studied. Each $p$-loxodrom...