Products of Toeplitz and Hankel operators on the Bergman space in the polydisk
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2018, Vol 72, Issue 2
Abstract
In this paper we obtain a condition for analytic square integrable functions f, g which guarantees the boundedness of products of the Toeplitz operators TfTg densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators HfH*g is also given.
Authors and Affiliations
Paweł Sobolewski
Eccentric distance sum index for some classes of connected graphs
In this paper we show some properties of the eccentric distance sum index which is defined as follows ξd(G)=∑v∈V(G)D(v)ε(v). This index is widely used by chemists and biologists in their researches. We present a lower bo...
Properties of modulus of monotonicity and Opial property in direct sums
We give an example of a Banach lattice with a non-convex modulus of monotonicity, which disproves a claim made in the literature. Results on preservation of the non-strict Opial property and Opial property under passing...
An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
The main result establishes that a weak solution of degenerate nonlinear elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.
Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W1LΦ([0,T]). We employ the direct method of calculus of variations and we consider a potential functio...
The generalized Day norm. Part I. Properties
In this paper we introduce a modification of the Day norm in c0(Γ) and investigate properties of this norm.