Random Forest Ensemble Machine Learning Model for Early Detection and Prediction of Weight Category

Journal Title: Journal of Data Science and Intelligent Systems - Year 2024, Vol 2, Issue 4

Abstract

The number of insurgents in our nation today is significantly rising each day, and the majority of those affected are living as internally displaced persons (IDP) in various IDP camps. These people experience a variety of health problems as a result of numerous factors. Due to financial difficulties and a lack of accessibility to healthcare facilities and medical professionals, these health risk factors may occasionally go undetected for long periods. BMI excesses, such as those in the underweight, overweight, and obese categories, are linked to several health issues, including low birth weight, poor quality of life, diabetes mellitus, cardiovascular diseases, and higher mortality. In the context of this paper, identifying the health status of IDPs depends critically on human body weight. Considering people living in IDP camps, early detection of the weight categories like underweight, overweight, and obese people is crucial because if not, they will be an early death or other health complications. To reduce mortality rates and other health complications that may result from improper and lately identifying underweight, overweight, and obese members in IDP camps, the researcher collected datasets from the IDP camps, trained, and developed a random forest (RF) ensemble model of supervised learning that will aids the medical practitioner in early detection and prediction of the weight category of IDPs. After hyper-parameter tuning and feature selection, the RF machine learning algorithms identify three significant parameters from the dataset's original 10 parameters to use as the model parameter. The highest accuracy obtained was 92% on the test dataset and 96% on the training dataset for the RF classifier using three features, while the accuracy of 83% was obtained on the test dataset and 87% on the training dataset for the RF classifier using ten features.

Authors and Affiliations

Samuel Iorhemen Ayua

Keywords

Related Articles

Performance Metrics of an Intrusion Detection System Through Window-Based Deep Learning Models

Intrusion and prevention technologies perform reliably in harsh conditions by fortifying many of the world's highest security sites with few defects in high performance. This paper aims to contribute by designing an intr...

Multiple Regression Model as Interpolation Through the Points of Weighted Means

A well-known property of the multiple linear regression is that its plane goes through the point of the mean values of all variables, and this feature can be used to find the model's intercept. This work shows that a re...

Symmetric Kernel-Based Approach for Elliptic Partial Differential Equation

In this work, two globally supported and positive definite radial kernels: generalized inverse multiquadric and linear Laguerre Gaussian radial kernels were used to construct symmetric kernel-based interpolating scheme u...

Identification of Damage in a Wind Turbine Blade Using Mechanical Measurements and Artificial Neural Networks

Due to the stochastic nature of environmental loadings, a lot of interest is paid in the discovery of possible damages to the involved equipment in modern industry. In wind turbines' blades, the development of a smart st...

Analytic Network Process (ANP) Method: A Comprehensive Review of Applications, Advantages, and Limitations

Nowadays, multi-criteria decision-making (MCDM) methods possess manifold applications in many areas from engineering to supply chain and management. The analytic network process (ANP) method is one of the most widely use...

Download PDF file
  • EP ID EP752196
  • DOI 10.47852/bonviewJDSIS32021149
  • Views 37
  • Downloads 0

How To Cite

Samuel Iorhemen Ayua (2024). Random Forest Ensemble Machine Learning Model for Early Detection and Prediction of Weight Category. Journal of Data Science and Intelligent Systems, 2(4), -. https://europub.co.uk/articles/-A-752196