Remote-mode microsphere nano-imaging: new boundaries for optical microscopes
Journal Title: Opto-Electronic Advances - Year 2018, Vol 1, Issue 1
Abstract
Optical microscope is one of the most popular characterization techniques for general purposes in many fields. It is distinguished from the vacuum or tip-based imaging techniques for its flexibility, low cost, and fast speed. However, its resolution limits the functionality of current optical imaging performance. While microspheres have been demonstrated for improving the observation power of optical microscope, they are directly deposited on the sample surface and thus the applications are greatly limited. We develop a remote-mode microsphere nano-imaging platform which can scan freely and in real-time across the sample surfaces. It greatly increases the observation power and successfully characterizes various practical samples with the smallest feature size down to 23 nm. This method offers many unique advantages, such as enabling the detection to be non-invasive, dynamic, real-time, and label-free, as well as leading to more functionalities in ambient air and liquid environments, which extends the nano-scale observation power to a broad scope in our life.
Authors and Affiliations
Lianwei Chen, Yan Zhou, Mengxue Wu, Minghui Hong*
Recent improvement of silicon absorption in opto-electric devices
Silicon dominates the contemporary electronic industry. However, being an indirect band-gap material, it is a poor absorber of light, which decreases the efficiency of Si-based photodetectors and photovoltaic devices. Th...
History, current developments, and future directions of near-field optical science
This paper reviews the science of the optical near-field (ONF), which is created and localized in a nanometer-sized material (NM) or on its surface. It is pointed out that work on near-field optics was started in order t...
On-chip readout plasmonic mid-IR gas sensor
Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. Here a novel mid-IR plasmonic gas sensor wit...
Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip
We present a detailed analysis on mode evolution of grating-coupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guided-wave theory. The eigenvalue equations for SPPs modes are discussed, revea...
All-metallic wide-angle metasurfaces for multifunctional polarization manipulation
Optical camouflage is a magical capability of animals as first noticed in 1794 by Erasmus Darwin in Zoonomia, but current biomimetic camouflage strategies cannot be readily applied in complex environments involving multi...