Removal of Penicillin G by combination of sonolysis and Photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (Response Surface Methodology)
Journal Title: Electronic Physician - Year 2016, Vol 8, Issue 9
Abstract
INTRODUCTION: Penicillin G (PG) is used in a variety of infectious diseases, extensively. Generally, when antibiotics are introduced into the food chain, they pose a threat to the environment and can risk health outcomes. The aim of the present study was the removal of Penicillin G from an aqueous solution through an integrated system of UV/ZnO and UV/WO3 with Ultrasound pretreatment. METHODS: In this descriptive-analytical work dealing with the removal of Penicillin G from an aqueous solution, four significant variables, contact time (60-120 min), Penicillin G concentration (50-150 mg/L), ZnO dose (200-400 mg/L), and WO3 dose (100-200 mg/L) were investigated. Experiments were performed in a Pyrex reactor (batch, 1 Lit) with an artificial UV 100-Watt medium pressure mercury lamp, coupled with ultrasound (100 W, 40 KHz) for PG pre-treatment. Chemical Oxygen Demand (COD) was selected to follow the performance of the photo-catalytic process and sonolysis. The experiments were based on a Central Composite Design (CCD) and analyzed by Response Surface Methodology (RSM). A mathematical model of the process was designed according to the proposed degradation scheme. RESULTS: The results showed that the maximum removal of PG occurred in ultrasonic/UV/WO3 in the presence of 50 mg/L WO3 and contact time of 120 minutes. In addition, an increase in the PG concentration caused a decrease in COD removal. As the initial concentration of the catalyst increased, the COD removal also increased. The maximum COD removal (91.3%) achieved by 200 mg/L WO3 and 400 mg/l ZnO, a contact time of 120 minutes, and an antibiotic concentration of 50 mg/L. All of the variables in the process efficiency were found to be significant (p < 0.05). Catalyst dose and contact time were shown to have a positive effect on the response (p < 0.05). CONCLUSION: The research data supported the conclusion that the combination of advanced oxidation process of sonolysis and photocatalytic (sonophotocatalytic) were applicable and environmentally friendly processes, which preferably can be applied extensively
Authors and Affiliations
Almasi A, Dargahi A, Mohamadi M, Biglari H, Amirian F, Raei M
The effect of diagnostic amniocentesis and its complications on early spontaneous abortion
INTRODUCTION: The occurrence of early abortion after amniocentesis is a serious problem in the fields of obstetrics and gynecology, and it is always important to discover the factors influencing this phenomenon. The inci...
General Health status of workers among different workplaces in Qom Province, Iran.
In a healthy organization, psychological health and physical health are as important as production and productivity; and healthy workers have higher productivity. Regarding lack of information about workers' general heal...
Molecular epidemiology of infectious diseases
Molecular epidemiology (ME) is a branch of epidemiology developed by merging molecular biology into epidemiological studies. In this paper, the authors try to discuss the ways that molecular epidemiology studies identify...
Relationship between Bone Density and Biochemical Markers of Bone among Two Groups Taking Carbamazepine and Sodium Valproate for Epilepsy in Comparison with Healthy Individuals in Yazd
INTRODUCTION: Chronic antiepileptic therapy has been associated with metabolic bone diseases including osteomalacia and osteoporosis. The aim of this study was to determine frequency of changes in biochemical and bone mi...
Exploring the perception of aid organizations’ staff about factors affecting management of mass casualty traffic incidents in Iran: a grounded theory study
BACKGROUND: Traffic incidents are of main health issues all around the world and cause countless deaths, heavy casualties, and considerable tangible and intangible damage. In this regard, mass casualty traffic incidents...