Research progress on in-situ catalytic hydrodeoxygenation of lignin
Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 2
Abstract
The development of renewable energy and carbon neutrality is imperative due to the depletion of fossil fuels and environmental pollution. Lignin, as the abundant natural aromatic polymer, can be converted into high-value chemicals and fuels, offering an alternative to fossil resources. The bio-oil and chemicals generated from lignin depolymerization have limited direct applications due to their high oxygen content. The strategy of hydrodeoxygenation (HDO) provides a pathway for the devel opment of high-value biobased fuels and chemicals. However, the traditional lignin conversion process, which is dominated by high-pressure molecular hydrogen, poses safety hazards, hindering its industrial promotion. In-situ catalytic HDO of lignin can be an alternative strategy. It utilizes solvents or lignin′s functional groups as hydrogen sources. During the catalytic process, hydrogen is generated in situ and acts on the substrate, achieving efficient value-added conversion. This method not only effectively avoids the need for external high-pressure hydrogen supply but also enables in-situ upgrading of lignin under mild conditions, improving atomic utilization and product selectivity. Through the study of in-situ catalytic HDO strategies for lignin, the research progress of in-situ hydrogen supply in recent years is summarized. The analysis includes the reaction mechanisms of four commonly used in-situ catalytic HDO strategies: combined reforming and HDO (RHDO), combined metal hydrolysis and HDO process (HHDO), catalytic transfer hydrogenation (CTH), and self-supported hydrogenolysis (SSH). The status of various strategies is discussed, and the research focus, challenges, and prospects of in-situ catalytic HDO strategies for lignin are explored.
Authors and Affiliations
ZHAO Yuying|Department of Environmental Science and Engineering, Fudan University, China, Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Waste, China, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China, Shanghai Institute of Pollution Control and Ecological Security, China, ZHAN Jiahui|Department of Environmental Science and Engineering, Fudan University, China, Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Waste, China, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China, Shanghai Institute of Pollution Control and Ecological Security, China, HU Rui|Department of Environmental Science and Engineering, Fudan University, China, Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Waste, China, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China, Shanghai Institute of Pollution Control and Ecological Security, China, LUO Gang|Department of Environmental Science and Engineering, Fudan University, China, Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Waste, China, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China, Shanghai Institute of Pollution Control and Ecological Security, China, ZHANG Shicheng*|Department of Environmental Science and Engineering, Fudan University, China, Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Waste, China, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China, Shanghai Institute of Pollution Control and Ecological Security, China
Current status and application prospects of industrial carbon emission data platforms at home and abroad
China is currently the country with the largest carbon emissions in the word, with industrial carbon emissions accounting for approximately 68% of the global carbon emissions. Under the "double control" of total amount a...
Experimental study on CO_2 dry biomethanation
As China has gradually become the largest energy consumer and carbon emitter, the efficient utilization of CO_2 has become an important means in realizing the "dual carbon" strategy. Microbial catalytic reduction of CO_2...
Progress in electrocatalytic denitrification using element-doped materials
Electrocatalytic denitrification is one of the promising technologies for the treatment of nitrate wastewater. This review comprehensively summarizes the recent advances in electrocatalytic denitrification. Two reaction...
Current Application Status and Technical Challenges of Microalgal-Bacterial Consortium Wastewater Treatment Technology
In the context of the national "dual carbon" target, the microalgal-bacterial consortium (MBC) system has emerged as a promising wastewater treatment technology. Leveraging its distinctive advantages in low-carbon resour...
Research status of amine aerosol formation and emission in amine carbon capture process
Post-combustion CO_2 absorption by amine has great potential for large-scale carbon capture and industrial promotion. However, in the process of efficiently absorbing CO_2, part of the absorbers will leave the carbon cap...